Mark schemes

Q1. potassium chloride (a) allow KCl 1 $H++OH- \rightarrow H2O$ (b) *ignore state symbols* 1 (c) copper carbonate and copper oxide only 1 (Step 2) to speed up the reaction (d) 1 (Step 5) to make sure all the (hydrochloric) acid reacts 1 (Step 6) to remove the excess magnesium oxide ignore to remove impurities 1 using a (boiling) water bath (e) or using an electric heater 1 (moles Fe = $\frac{14}{56}$ =) 0.25 (mol) (f) 1 (moles Cl2 = $\frac{3}{2}$ 2 × 0.25 =) 0.375 (mol) allow correct use of an incorrectly calculated number of moles of Fe 1 $(volume Cl2 = 24 \times 0.375) = 9.0 (dm3)$ allow correct use of an incorrectly calculated number of moles of Cl2 1 [10] Q2. (a) water vapour allow steam allow gaseous water 1 75 (cm3) (b)

1

(d)

(c) product level below reactants ignore labelling of products

	activation energy drawn and labelled		
	overall energy change drawn and labelled if endothermic profile drawn allow corresponding overall energy change		
	Energy	Activation energy $2 H_2S(g) + 3 O_2(g)$ Overall energy change $(2 H_2O(g) + 2 SO_2(g))$	
		Progress of reaction	
	scores 3	marks	
)	(bonds br	roken = 4(364) + 3(498) =) 2950	
	(bonds fc	ormed = 2950 + 1034 =) 3984 allow correct use of incorrectly calculated values of bonds broken	
	4X + 4(464) = 3984		
		allow correct use of incorrectly calculated values of bonds formed	
	4X = (3984 – 1856 =) 2128		
	X = 532 (kJ/mol)		
	alternative approach:		
	(bonds broken = 4(364) + 3(498) =) 2950 (1)		
	(bonds formed = 4(464) + 4X =) 1856 + 4X (1)		
	(1856 + 4X) - 2950 = 1034 (1)		
		allow correct use of incorrectly calculated values of bonds broken	

and/or bonds formed 4X = (1034 + 2950 - 1856 =) 2128 (1)X = 532 (kJ/mol) (1)[10] Q3. (a) the activation energy should be from the reactants (line to the peak) ignore description of where the activation energy is on the diagram 1 the products (line) should be below the reactants (line) or the products should have less energy than the reactants allow the product (line) is above the reactants (line) allow the products have more energy than the reactants allow the profile shows an endothermic reaction ignore the arrow for the overall energy change should point downwards 1 (b) any two from: (hydrogen fuel cells) allow converse arguments for a rechargeable cell no toxic chemicals to dispose of at the end of the cell's life • take less time to refuel (than to recharge rechargeable cells) • travel further before refuelling (than before recharging rechargeable cells) allow has a greater range no loss of efficiency (over time) . allow does not lose capacity / range in cold weather 2 2 (c) any one from: allow multiples $H2 \rightarrow 2H++2e-$ • allow H₂- 2 e- \rightarrow 2 H+ $O2 + 4H + 4 e \rightarrow 2 H2O$ • allow H_2 + 2 OH - 2 e \rightarrow 2 H2O H2 +20H- → 2 H2O + 2 e-

	• 02 + 2 H2O+4e- → 4 OH-	1
(d)	 any two from: hydrogen is not shown as H2 / molecules particles are shown as spheres particles are shown as solid does not show the (weak) forces (between particles) does not show the movement / speed (of particles) is only two-dimensional 	2
(e)	 any one from: under (higher) pressure allow increase concentration cool allow condense absorb / adsorb in a solid allow store as a liquid / solid allow develop more efficient engines 	1
(f)	(58 MJ =) 58 000 kJ or (290 kJ =) 0.290 MJ <i>allow (58 MJ =) 58 000 000 J</i> <i>and</i> (290 kJ =) 290 000 J	1
	(moles = $\frac{58000}{290}$ or $\frac{58}{0.290}$ allow correct use of an incorrectly converted or unconverted value of energy	1
	(volume =) 200 × 24 allow correct use of an incorrectly calculated number of moles of hydrogen	1
	= 4800 (dm3)	1
	alternative approach: (58 MJ =) 58 000 kJ (1) (energy released per dm3 = $\frac{290}{24}$ =) 12.08333 (kJ/dm3) (1)	
	(volume =) 12.08333 (1) allow correct use of an incorrectly	

converted or unconverted value of energy allow correct use of an incorrectly calculated energy released per dm3

= 4800 (dm3) (1)

[12]

Q4.		
(a)	mixture has a lower melting point (than aluminium oxide) allow cryolite lowers melting point (of aluminium oxide)	
	ignore boiling point	
	do not accept cryolite is a catalyst	1
	(so) less energy needed	
	ignore cost	1
(b)	aluminium ions gain electrons	1
(c)	2 02- → 02 + 4 e-	
(C)	allow multiples allow 1 mark for an unbalanced	
	equation containing correct species	2
(d)	the electrode reacts with oxygen	1
	the electrode is carbon / graphite	1
	(so) carbon dioxide is produced allow (so) the electrode / carbon / graphite is used up allow (so) the electrode / carbon / graphite is burned away ignore (so) the electrode / carbon / graphite is worn away ignore (so) the electrode / carbon / graphite is corroded	
(e)	an answer of 941 (kg) scores 4 marks	1
	(<i>M</i> r of Al2O3 =) 102	
	$\left(\frac{2\ 000\ 000}{102}\right)$ = 19608 (mol Al ₂ O ₃)	

allow correct calculation using incorrectly calculated value of Mr of

Al2O3 $(19608 \times \frac{3}{2} =) 29412 \pmod{O_2}$ allow correct calculation using incorrectly calculated value of moles of AI2O3 $\left(\frac{29412 \times 32}{1000}\right)$ = 941 (kg) allow 941.1764706 (kg) correctly rounded to at least 2 significant figures allow correct answer using incorrectly calculated value of moles of O2 alternative approach: (2 Mr of Al2O3 =) 204 (1) 204 (kg of Al2O3) gives 96 (kg of O2) (1) (2000 kg of Al2O3 gives) 2000 × 96 (kg of O₂) or $\frac{2000000}{204}$ × 96 (g of O₂) (1) = 941 (kg) (1)hydrogen (gas) would be produced (instead of sodium) (because) sodium is more reactive than hydrogen an answer of 50700 (dm3) scores 2 marks an answer of 50.7 (dm3) scores 1 mark

1

1

1

1

1

1

$$\left(\frac{150\ 000}{71}\right)$$
 2113 (mol of Cl₂)

or

(f)

(g)

(volume of 1 g of Cl2 = $\frac{24}{71}$ =) 0.34 (dm3) ($\frac{150\ 000}{71}$ x 24) = 50700 (dm³) allow 50704.22535 (dm3) correctly rounded to at least 2 significant figures allow correct calculation using their calculated number of moles and/or calculated volume of 1 g

1

1

1

1

1

1

1

1

[16]

L	I	6

Q5.			
(a)	wood is renewable		
	or (natural) gas is finite		
	(burning) wood produces the same amount of carbon dioxide as the trees absorbed		
	allow wood is carbon-neutral allow wood does not add to global warming		
	or (burning natural) gas increases the amount of carbon dioxide (in the atmosphere)		
	allow (burning natural) gas adds to global warming allow (burning natural) gas adds		
	greenhouse gases (to the atmosphere)		
	ignore references to energy / cost		
(b)	not enough oxygen allow not enough air		
	do not accept no oxygen / air		
	(so) incomplete combustion		
(c)	$2CH4(g) + 3O2(g) \rightarrow 2CO(g) + 4H2O(g)$		
	allow correct multiples / fractions		
(d)			
	an answer of 1250 (cm3 oxygen unreacted) scores 4 marks		
	ratio of O2 : CO2 = 5 : 3		
	(oxygen needed = $\frac{3.60 \times 5}{3}$) = 6.0 (dm ³)		
	allow correct calculation using an incorrectly determined mole ratio		

(oxygen unreacted = 7.25 - 6.0) = 1.25 (dm3)

	allow correct subtraction of an incorrectly calculated volume of oxygen	1	
	(oxygen unreacted = 1.25 × 1000)		
	= 1250 (cm3) allow correct conversion to cm3 anywhere in response alternative approach for MP1 and MP2	1	
	moles CO2 = 0.15		
	and		
	moles O2 = 0.25 (1) (0.25 x 24 =) 6.0 (dm3 oxygen needed) (1)	[9]
Q6.			
Q0. (a)	solid (zinc chloride) does not conduct (electricity)		
	or zinc chloride needs to be in solution or molten		
	allow liquid / aqueous	1	
	(because) ions cannot move in the solid or		
	(as) ions can (only) move in liquid / solution		
	do not accept references to movement of electrons in zinc chloride	1	
(b)	each carbon / atom forms 3 (covalent) bonds	1	
	one electron per carbon / atom is delocalised	1	
	(so) these electrons carry charge through the graphite		
	or (so) these electrons move through the structure ignore carry current / electricity	1	
	if no other mark scored, allow 1 mark for delocalised / free electrons allow free electrons for delocalised electrons	1	
(c)	use measuring cylinders (instead of test tubes) allow use burettes allow use (gas) syringes allow Hoffmann voltameter		
	anow nojjinann voltameter	1	

(because) test tubes cannot measure volume or (because) test tubes have no graduations / scale *allow (so that) volume can be measured*

- (d) any three from:
 - the volume of hydrogen collected is directly proportional to the time

1

3

1

1

allow the (volume of) hydrogen is collected at a constant / steady rate

- the rate of collection of hydrogen is 0.45 (cm3/min)
- up to 8 minutes chlorine is collected at an increasing rate

allow any value from 6 to 8 minutes allow initially chlorine is collected at an increasing rate

• after 8 minutes the rate of collection of chlorine is the same as that of hydrogen

allow any value from 6 to 8 minutes

or

after 8 minutes the rate of collection of chlorine is 0.45 (cm3/min)

allow after 8 minutes the (volume of) chlorine is collected at a constant / steady rate if neither bullet point 3 nor bullet point 4 is awarded allow 1 mark for chlorine is collected slowly up to 8 minutes and then more quickly allow any value from 6 to 8 minutes

(e) chlorine reacts with water or chlorine dissolves (in the solution).

$$(volume =) \frac{6.6}{1000} (dm^3)$$

or 0.0066 (dm3)

allow 6.5 (cm3) for 6.6 (cm3)

$$(\text{moles}=)\frac{0.0066}{24}$$

allow use of incorrect volume from step

Q7.

		1	1	
	= 2.75 × 10-4 (mol)			
	allow 2.8 × 10–4 (mol)			
		allow answer from incorrect calculation given in standard form		
		alternative approach for marking points 1 and 2		
		24 dm3 = 24 000 cm3 (1)		
		$(moles =) \frac{6.6}{24000} $ (1)		
			1	
		an answer of 2.75 × 10−4 (mol) or 2.8 ×		
		10–4 (mol) scores 3 marks		
		an answer of 0.000275 / 0.00028 / 2.75		
		× 10−1 / 2.8 × 10−1 (mol) / scores 2 marks		
		an incorrect answer for one step does not prevent allocation of marks for		
		subsequent steps		[10]
				[10]
7				
7.				
(a)	cool		1	
	to -34°C			
		allow temperatures below −34 °C but above −196 °C		
		C	1	
(h)	roovalad (t	to the reactor)		
(b)	Tecycled (I	to the reactor)	1	
(c)	$825 \times \frac{2}{3}$			
(C)	3		1	
	= 550 (dm	3)	1	
		an answer of 550 (dm3) scores 2 marks		
<i>(</i>))				
(d)	a lower pro	essure would decrease the equilibrium yield	1	
	a lower ter	mperature would make the reaction too slow		
			1	
(e)	nitrogen /	N		
(-)			1	

(f)	B and C	1
	contain nitrogen, phosphorus and potassium	1
(g)	(B)	
	any two from: • more stages • uses more energy • uses more raw materials • takes longer	
	allow converse for C	2 [12]