Mark schemes

Q1.			
•	(a)	a dilute solution of a strong acid	
			1
((b)	1.0 mol/dm3 hydrogen chloride solution	
			1
((c)	any two from:	
		swirl (the solution)	
		 white tile (under the flask) add (ethanedioic) acid dropwise (near the endpoint) 	
		repeat and calculate mean	
			2
((d)	$(concentration = 90 \times 0.0480 =)$	
		4.32 (g/dm3)	
			1
		$(mass = 4.32 \times \frac{250}{1000}) = 1.08 (g)$	
		allow correct use of an incorrectly	
		calculated value of concentration in	
		g/dm3	
			1
		alternative approach:	
		250	
		$(moles = 0.0480 \times \frac{250}{1000} =)$	
		0.012 (mol) (1)	
		$(mass = 0.012 \times 90)$	
		= 1.08 (g) (1)	
		allow correct use of an incorrectly calculated value of number of moles	
		culculated value of number of moles	
	(e)	(moles H2C2O4 = $\frac{15.0}{1000} \times 0.0480$)	
((6)	= 0.00072 (mol)	
			1
		(moles NaOH =	
		moles H2C2O4 \times 2 =)	
		0.00144 (mol)	
		allow correct use of an incorrectly calculated value of number of moles of	
		H2C2O4	
			1
		$(concentration = \frac{0.00144}{25.0} \times 1000)$	
		$(concentration = 25.0 \times 1000)$ = 0.0576 (mol/dm3)	

allow 0.058 (mol/dm3) allow correct use of an incorrectly calculated value of number of moles of NaOH

alternative approach: volume × conc (acid) volume × conc (NaOH) = $\frac{1}{2}$ (1)

allow inverse

allow correct use of incorrect mole ratio

= 0.0576 (mol/dm3) (1)

[9]

1

1

Q2.

(a) didn't stir (the solution enough)

allow measured the temperature before the temperature stopped falling allow measured the temperature too soon

(b) the temperature decreases (initially) because energy is taken in (by the reaction from the solution)

allow temperature decreases (initially) because the reaction is endothermic

when 1.5 g (of citric acid) is added the sodium hydrogencarbonate has all reacted

allow when the temperature reaches 11.6 °C the sodium hydrogencarbonate has all reacted

or

from 1.5 g the citric acid is in excess

allow after the temperature reaches 11.6 °C the citric acid is in excess

or

when 1.5 g (of citric acid) is added the reaction is complete

allow when the temperature reaches 11.6 °C the reaction is complete

(so) the temperature increases as energy is transferred from the room to the solution

allow (so) the temperature increases as energy is transferred from the excess

	citric acid to the solution	1
(c)	less steep line starting at 16.8 °C and reaching 1.00 g (of citric acid) ignore any part of the line drawn beyond 1.00 g	1
	(as) metal is a better conductor	
	allow (as) polystyrene is a better insulator	1
	(so) more energy is absorbed (from the surroundings) allow (so) more heat is absorbed (from the surroundings)	1
(d)	(<i>M</i> r citric acid =) 192	
	$(\text{moles} = \frac{250}{1000} \times 0.0500) = 0.0125$	
	(mass = 0.0125 × 192 =) 2.4 (g)	1
	allow correct use of an incorrectly calculated Mr allow correct use of an incorrectly calculated number of moles	1
	alternative approach:	
	(Mr citric acid =) 192 (1)	
	(concentration = 0.0500 × 192) = 9.6 (g/dm3) (1) allow correct use of an incorrectly calculated Mr	
	$(mass = \frac{250}{1000} \times 9.6 =) 2.4 (g) (1)$	
	allow correct use of an incorrectly calculated concentration in g/dm3	
(e)	add the citric acid (to the flask) until there is a (permanent) colour change	
	ignore colours of indicator	1
	measure / record the volume (of citric acid) added allow take the final (and initial) burette reading	

1

	 any one from: swirl use a white tile add the citric acid dropwise (near the end-point) repeat and calculate a mean <i>allow add the citric acid slowly (near the end-point)</i> 	1
(f)	any two from:	
	can add (the citric acid) in small increments	
	allow can add (the citric acid) drop by drop	
	allow can add (the citric acid) slowly	
	can measure variable volumes	
	allow has a scale 2	
	more accurate than a measuring cylinder	2
	13.3	
(g)	(moles citric acid = 1000 × 0.0500) = 0.000665	
	· · · · · · · · · · · · · · · · · · ·	1
	(moles NaOH = 3×0.000665) = 0.001995	
	allow correct use of an incorrectly calculated number of moles of citric acid	
		1
	1000 25 0.001005) 0.0700 (mal/dm2)	
	(conc = 25 × 0.001995) = 0.0798 (mol/dm3) <i>allow 0.08 or 0.080 (mol/dm</i>)	
	allow correct use of an incorrectly	
	calculated number of moles of NaOH	1
	alternative approach:	
	$\frac{25.0 \times \text{conc NaOH}}{12.2 \times 0.0500} = \frac{3}{1}$ (1)	
	13.3 × 0.0500 1 13.3 ×0.0500 _ 1	
	$\alpha llow = \frac{1}{25.0 \times \text{conc NaOH}} = \frac{1}{3}$	
	$(\text{conc NaOH} =) 3 \times \frac{13.3 \times 0.0500}{25.0}$ (1)	

[18]

(a)	polystyrene is a better (thermal) insulator allow polystyrene is a poorer (thermal) conductor	1
	(so) reduces energy exchange (with the surroundings) allow (so) reduces energy / heat loss (to the surroundings)	1
(b)	all six points plotted correctly allow a tolerance of ± ½ a small square allow 1 mark for at least 3 points plotted correctly	2
	line of best fit through points plotted from the table	1
	both lines of best fit extrapolated correctly until they cross	1
(c)	11 (cm3) allow ecf from part (b) allow answers in the range 10.75 to 11.25 (cm3) allow a tolerance of ± ½ a small square	1
(d)	(27.5 – 18.9) = 8.6 (°C) allow ecf from part (b) allow answers in the range 8.5 to 8.7 (°C) allow a tolerance of ± ½ a small square	1
(e)	an answer of 0.62 (mol/dm3) for concentration in mol/dm3 scores4 marks an answer of 0.31 (mol/dm3) for concentration in mol/dm3 scores ₃ marks	
	(moles H2SO4 = $0.500 \times \frac{15.5}{1000} = 0.00775$	1
	(moles KOH = 2 x moles H2SO4 = 2 x 0.00775) = 0.0155 allow correct calculation using incorrectly calculated value of moles of H2SO4	1
		I

Q4.

	$(\text{conc KOH} = \text{moles KOH x} \stackrel{1000}{25.0}) = 0.0155 \times \stackrel{1000}{25.0})$ allow correct calculation using incorrectly calculated value of moles of KOH	
		1
	= 0.62 (mol/dm3) allow correct answer using incorrectly calculated value of moles of KOH	1
	(<i>M</i> r KOH =) 56	1
	(conc = Mr x conc in mol/dm³= 56 x 0.62) = 34.7 (g/dm3) allow 35 or 34.72 (g/dm³) allow correct answer using incorrectly calculated value of concentration in mol/dm3 and/or incorrect Mr	1
		I
	alternative approach for step 1 to step 4	
	$\frac{2}{1} = \frac{25 \times \text{conc KOH}}{15.5 \times 0.500} $ (2)	
	$(\text{conc KOH}) = \frac{2 \times 15.5 \times 0.500}{25.0} (1)$	
	= 0.62 (mol/dm3) (1) allow 1 mark if mole ratio is incorrect	1 [14]
4. (a)	(strong because) completely ionised (in aqueous solution) ignore pH allow dissociated for ionised do not accept hydrogen is ionising do not accept H+ are ionised	
		1
	(dilute because) small amount of acid per unit volume	
	ignore low concentration	
		1
(b)	5.0	
	allow 5	
		1
(c)	(titre):	
	chooses titrations 3, 4, 5	1

average titre = 22.13 (cm3) allow average titre = 22.13(3...) (cm3) allow a correctly calculated average from an incorrect choice of titrations (calculation): (moles NaOH = $\frac{22.13}{1000} \times 0.105 = 0.002324)$ allow use of incorrect average titre from step 2 (moles H2SO4 = 1/2 × 0.002324 =) 0.001162 allow use of incorrect number of moles from step 3 (concentration = 0.001162 ×1000) 25 = 0.0465 (mol/dm3)allow use of incorrect number of moles from step 4 alternative approach for step 3, step 4 and step 5 $\frac{2}{1} = \frac{22.13 \times 0.105}{25.0 \times \text{conc. } H_2 \text{SO}_4} (1)$ (concentration H2SO4 =) 22.13×0.105 25.0×2 = 0.0465 (mol/dm3) (1) an answer of 0.046473 or 0.04648 correctly rounded to at least 2 sig figs scores marking points 3, 4 and 5 an answer of 0.092946 or 0.09296 or 0.185892 or 0.18592 correctly rounded to at least 2 sig figs scores marking points 3 and 5 an incorrect answer for one step does not prevent allocation of marks for subsequent steps

1

1

1

1

1

1

(d) pipette measures a fixed volume (accurately)

(but) burette measures variable volume allow can measure drop by drop

(e)
$$(\text{moles} =)\frac{30}{1000} \times 0.105$$

or 0.00315 (mol)
or $(\text{mass per dm3} =) 0.105 \times 40$
or 4.2 (g)
 $(\text{mass} = \frac{30}{1000} \times 0.105 \times 40)$
= 0.126 (g)
an answer of 0.126 (g) scores 2 marks
an answer of 126 (g) scores 1 mark
an incorrect answer for one step does
not prevent allocation of marks for
subsequent steps
[12]
Q5.
(a) produces H+ / hydrogen ions in aqueous solution
(but is) only partially / slightly ionised
(b) indicator changes colour
from blue to yellow
allow from blue to green
(when) the acid and alkali are (exactly) neutralised
or (when) no excess of either acid or alkali
(c) pipette measures one fixed volume (accurately)
(but) burette measures variable volumes (accurately)
(d) $\frac{12.10 + 12.15 + 12.15}{3}$
(mean titre =) 12.13(3) (cm3)
(moles NaOH = conc × vol) = 0.00255

		1	
	(moles citric acid = $\frac{1}{3}$ moles NaOH) = 0.00085	1	
	(conc acid = moles / vol) = 0.0701 (mol / dm3) allow ecf from steps 1, 2, 3 and / or 4 allow an answer of 0.0701 (mol / dm3) without working for 1 mark only	1	[12]
Q6.			
(a)	(sulfuric acid is) completely / fully ionised	1	
	In aqueous solution or when dissolved in water	1	
(b)	H+(aq) + OH−(aq) → H2O(l) allow multiples 1 mark for equation 1 mark for state symbols	2	
(c)	adds indicator, eg phenolpthalein / methyl orange / litmus added to the sodium hydroxide (in the conical flask)		
	do not accept universal indicator	1	
	(adds the acid from a) burette	1	
	with swirling or dropwise towards the end point or until the indicator just changes colour	1	
	until the indicator changes from pink to colourless (for phenolphthalein) or yellow to red (for methyl orange) or blue to red (for litmus)		
(d)	titrations 3, 4 and 5 or <u>27.05 + 27.15 + 27.15</u> <u>3</u>	1	
		1	
	27.12 cm3 accept 27.12 with no working shown for 2 marks	1	
	allow 27.1166 with no working shown for 2 marks		

(e)	Moles H2SO4 = conc × vol = 0.00271 allow ecf from 8.4	1
	Ratio H2SO4:NaOH is 1:2	
	or Moles NaOH = Moles H2SO4 × 2 = 0.00542	1
	Concentration NaOH = mol / vol = 0.00542 / 0.025 = 0.2168	1
	0.217 (mol / dm3)	
	accept 0.217 with no working for 4 marks	1
	accept 0.2168 with no working for 3 marks	
(f)	$\frac{20}{1000} \times 0.18 = \text{no of moles}$	
	or	
	0.15 × 40 g	1
	0.144 (g)	1
	accept 0.144g with no working for 2 marks	1
		[16]