All questions are for separate science students only

Q1.

This question is about the extraction of metals.

Element R is extracted from its oxide by reduction with hydrogen.

The equation for the reaction is:

(a) The sum of the relative formula masses (*M*r) of the reactants (3 H2 + RO3) is 150

Calculate the relative atomic mass (Ar) of R.

Relative atomic masses (Ar):H = 1 O = 16

Relative atomic mass (Ar) of R = ____

(b) Identify element R.

You should use:

- your answer to part (a)
- the periodic table.

Identity of = _____ (1)

(2)

(c) Carbon is used to extract tin (Sn) from tin oxide (SnO2).

The equation for the reaction is:

 $SnO2 + C \rightarrow Sn + CO2$

Calculate the percentage atom economy for extracting tin in this reaction.

Relative atomic masses (Ar):C = 12 O = 16 Sn = 119

Percentage atom economy = _____% (3)

(d) Tungsten (W) is a metal.

Tungsten is extracted from tungsten oxide (WO3).

All other solid products from the extraction method must be separated from the tungsten.

The table below shows information about three possible methods to extract tungsten from tungsten oxide.

Method	Reactant	Relative cost of reactant	Products
1	Carbon	Low	Tungsten solid Carbon dioxide gas Tungsten carbide solid
2	Hydrogen	High	Tungsten solid Water vapour
3	Iron	Low	Tungsten solid Irol oxide solid

Evaluate the three possible methods for extracting tungsten from tungsten oxide.

(4) (Total 10 marks)

Q2.

This question is about organic compounds.

(a) Butane is an alkane with small molecules.

Complete the sentence.

Choose the answer from the box.

fertiliser formulation fuel

Butane can be used as a _____

(1)

(b) Poly(propene) is a polymer.

What is the name of the monomer used to produce poly(propene)?

Tick (√) one box.

Propane	
Propanoic acid	
Propanol	29
Propene	

(1)

Ethene and steam react to produce ethanol.

The equation for the reversible reaction is:

ethene + steam ≓ ethanol

 (c) The reaction produces a maximum theoretical mass of 400 kg of ethanol from 243 kg of ethene and 157 kg of steam.
 A company produces 380 kg of ethanol from 243 kg of ethene and 157 kg

of steam.

The percentage yield of ethanol is less than 100%

	Calculate the percentage yield of ethanol.	
	Use the equation:	
p	ercentage yield of ethanol = $\frac{\text{mass of ethanol actually made}}{\text{maximum theoretical mass of ethanol}} \times 10^{-10}$	0
	Percentage yield =	%
(d)	What are two possible reasons why the percentage yield of eth than 100%?	anol is less
	Tick (√) two boxes.	
	Ethanol is the only product of the reaction.	
	Ethanol is very unreactive.	
	Some ethanol changes back into ethene and steam. Some ethanol escapes from the apparatus.	
	Some ethanol reacts with steam.	(2)
(e)	Ethanol burns in oxygen.	(2)
	Balance the equation for the reaction.	
	C2H5OH + O2 → 3 H2O + 2 CO2	(1)
(f)	 Two processes for producing ethanol are: fermentation hydration (reacting ethene with steam). 	
	The table below shows information about the processes.	

Feature	Process		
reature	Fermentation	Hydration	

Raw material	sugar	crude oil
Energy usage	e low	high
Rate of reaction	slow	fast
Purity of ethanol	15%	98%

Give two advantages and two disadvantages of using fermentation to produce ethanol.

Advantage of fermentation 1 _____

Advantage of fermentation 2 _____

Disadvantage of fermentation 1_____

Disadvantage of fermentation 2 _____

(4) (Total 11 marks)

Q3.

This question is about silver iodide.

Silver iodide is produced in the reaction between silver nitrate solution and sodium iodide solution.

The equation for the reaction is:

 $AgNO3(aq) + NaI(aq) \rightarrow AgI(s) + NaNO3(aq)$

(a) A student investigated the law of conservation of mass.

This is the method used.

- 1. Pour silver nitrate solution into a beaker labelled A.
- 2. Pour sodium iodide solution into a beaker labelled B.
- 3. Measure the masses of both beakers and their contents.
- 4. Pour the solution from beaker B into beaker A.
- 5. Measure the masses of both beakers and their contents again.

The table below shows the student's results.

	Mass before mixing in g	Mass after mixing in g
Beaker A and contents	78.26	108.22
Beaker B and contents	78.50	48.54

Explain how the results demonstrate the law of conservation of mass.

You should use data from table above in your answer.

(2) Suggest how the student could separate the insoluble silver iodide from the (b) mixture at the end of the reaction. (1) The student purified the separated silver iodide. This is the method used. Rinse the silver iodide with distilled water. 1. Warm the silver iodide. 2. (c) Suggest one impurity that was removed by rinsing with water. (1) (d) Suggest why the student warmed the silver iodide. (1) (e) Calculate the percentage atom economy for the production of silver iodide in this reaction.

The equation for the reaction is:

AgNO3(aq) + Nal(aq) →	AgI(s) + NaN(D3(aq)
Give your answer to 3	significant fi	gures.	
Relative formula mas	ses:		
(Mr): AgNO3 = 170	Nal = 150	AgI = 235	NaNO3 = 85
Percentage atom e	economy (3 si	gnificant figu	ures) =
Give one reason why r industry.	eactions with	n a high atom	n economy are used ir
			(Total 10 m

Q4.

This question is about the extraction of metals.

(a) Tungsten is a metal.

The symbol of tungsten is W

Tungsten is produced from tungsten oxide by reaction with hydrogen.

The equation for the reaction is:

WO3 + 3 H2 \rightarrow W + 3 H2O

Calculate the percentage atom economy when tungsten is produced in this reaction.

Use the equation:

	percentage atom economy = $\frac{184}{(M_r \text{ WO}_3) + (3 \times M_r \text{ H}_2)} \times 100$	
	Relative formula masses (Mr): WO3 = 232 H2 = 2	
	Percentage atom economy =	%
lu	minium is extracted from aluminium oxide.	
b)	38% of a rock sample is aluminium oxide. Calculate the m	lass of
	aluminium oxide in 40 kg of the rock sa	ample.
	Mass of aluminium oxide =	0
c)	The formula of aluminium oxide is Al2O3	
c)	Calculate the relative formula mass (<i>Mr</i>) of aluminium oxide.	
	Relative atomic masses (<i>Ar</i>): O = 16 Al = 27	

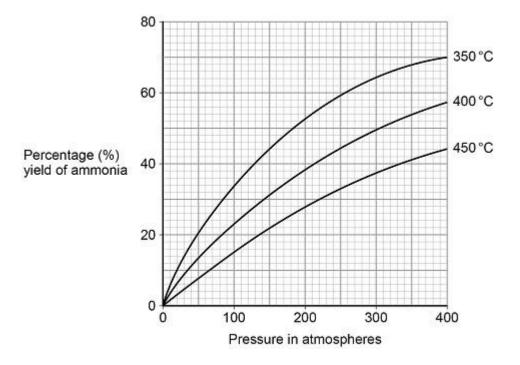
In an extraction process only 28.4 kg of aluminium is produced from 60.0 kg of aluminium oxide.

	Calculate the percentage yield.		
	Give your answer to 3 significant figures.		
	Use the equation:		
	percentage yield = $\frac{\text{mass of product actually made}}{\text{maximum theoretical mass of product}} \times 100$		
		-	
		_	
		_	
	Percentage yield =	%	(3)
(e)	Extracting metals by electrolysis is a very expensive proces	S.	
	Explain why aluminium is extracted using electrolysis and with carbon.	not by rec	ductior
		_	
		_	
		_	
		(Total 11 m	(2) arks)

Q5.

This question is about reversible reactions and equilibrium.

Hydrogen is used to produce ammonia in the Haber process.


The hydrogen is made in two stages.

Stage 1 is the reaction of methane and steam to produce carbon monoxide and hydrogen.

The equation for the reaction is:

Relative atomic masses (Ar): $H = 1$ $C = 12$ $O = 16$						-	drogen in stage
Explain why a low pressure is used in stage 1. Give your answer in terms of equilibrium. Stage 2 uses the carbon monoxide produced in stage 1. The carbon monoxide is reacted with more steam to produce carbodioxide and more hydrogen. The equation for the reaction in stage 2 is: $CO(g) + H2O(g) \rightleftharpoons CO2(g) + H2(g)$ What is the effect of increasing the pressure on the equilibrium yiel	Relativ	e atomic	masses (Ar):	H = 1	C = 12	0 =	16
Explain why a low pressure is used in stage 1. Give your answer in terms of equilibrium. Stage 2 uses the carbon monoxide produced in stage 1. The carbon monoxide is reacted with more steam to produce carbodioxide and more hydrogen. The equation for the reaction in stage 2 is: $CO(g) + H2O(g) \rightleftharpoons CO2(g) + H2(g)$ What is the effect of increasing the pressure on the equilibrium yield							
Explain why a low pressure is used in stage 1. Give your answer in terms of equilibrium. Stage 2 uses the carbon monoxide produced in stage 1. The carbon monoxide is reacted with more steam to produce carbodioxide and more hydrogen. The equation for the reaction in stage 2 is: $CO(g) + H2O(g) \rightleftharpoons CO2(g) + H2(g)$ What is the effect of increasing the pressure on the equilibrium yield							
Explain why a low pressure is used in stage 1. Give your answer in terms of equilibrium. Stage 2 uses the carbon monoxide produced in stage 1. The carbon monoxide is reacted with more steam to produce carbodioxide and more hydrogen. The equation for the reaction in stage 2 is: $CO(g) + H2O(g) \rightleftharpoons CO2(g) + H2(g)$ What is the effect of increasing the pressure on the equilibrium yiel							
Giveyouranswerintermsofequilibrium			At	om ecc	nomy =		%
Stage 2 uses the carbon monoxide produced in stage 1. The carbon monoxide is reacted with more steam to produce carbon dioxide and more hydrogen. The equation for the reaction in stage 2 is: $CO(g) + H2O(g) \rightleftharpoons CO2(g) + H2(g)$ What is the effect of increasing the pressure on the equilibrium yield	Explain	why a lo	w pressure i	s used i	n stage 1.		
The carbon monoxide is reacted with more steam to produce carbon dioxide and more hydrogen. The equation for the reaction in stage 2 is: $CO(g) + H2O(g) \rightleftharpoons CO2(g) + H2(g)$ What is the effect of increasing the pressure on the equilibrium yield	Give	your	answer	in	terms	of	equilibrium.
The carbon monoxide is reacted with more steam to produce carbon dioxide and more hydrogen. The equation for the reaction in stage 2 is: $CO(g) + H2O(g) \rightleftharpoons CO2(g) + H2(g)$ What is the effect of increasing the pressure on the equilibrium yield							
The carbon monoxide is reacted with more steam to produce carbon dioxide and more hydrogen. The equation for the reaction in stage 2 is: $CO(g) + H2O(g) \rightleftharpoons CO2(g) + H2(g)$ What is the effect of increasing the pressure on the equilibrium yield							
The carbon monoxide is reacted with more steam to produce carbon dioxide and more hydrogen. The equation for the reaction in stage 2 is: $CO(g) + H2O(g) \rightleftharpoons CO2(g) + H2(g)$ What is the effect of increasing the pressure on the equilibrium yield							
The carbon monoxide is reacted with more steam to produce carbon dioxide and more hydrogen. The equation for the reaction in stage 2 is: $CO(g) + H2O(g) \rightleftharpoons CO2(g) + H2(g)$ What is the effect of increasing the pressure on the equilibrium yield							
The carbon monoxide is reacted with more steam to produce carbon dioxide and more hydrogen. The equation for the reaction in stage 2 is: $CO(g) + H2O(g) \rightleftharpoons CO2(g) + H2(g)$ What is the effect of increasing the pressure on the equilibrium yield							
dioxide and more hydrogen. The equation for the reaction in stage 2 is: $CO(g) + H2O(g) \rightleftharpoons CO2(g) + H2(g)$ What is the effect of increasing the pressure on the equilibrium yield	Stage 2	uses the	e carbon mo	noxide	oroduced i	in stag	e 1.
CO(g) + H2O(g) \rightleftharpoons CO2(g) + H2(g) What is the effect of increasing the pressure on the equilibrium yield					th more st	eam to	produce carbo
What is the effect of increasing the pressure on the equilibrium yiel	The eq	uation fo	r the reactio	n in sta	ge 2 is:		
			CO(g) + H2C)(g) ≓ C	:02(g) + H2	<u>2(g)</u>	
				ing the	pressure c	on the	equilibrium yield

The graph below shows the percentage yield of ammonia produced at different temperatures and pressures in the Haber process.

A temperature of 450 $^{\circ}\mathrm{C}$ and a pressure of 200 atmospheres are used in the Haber process.

(d) A student suggested that a temperature of 350 °C and a pressure of 285 atmospheres could be used instead of those used in the Haber process. Determine how many times greater the percentage yield of ammonia obtained would be.

Use the graph.

Percentage yield = _____ times greater

(3)

(1)

(e) A pressure of 285 atmospheres is not used in the Haber process instead of 200 atmospheres.

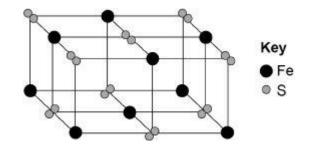
Give one reason why.

(f) How does the graph above show that the forward reaction in the Haber process is exothermic?

(2)

(g) World production of ammonia is now about 30 times greater than it was in 1950.

Suggest why the demand for ammonia has increased.


(Total 12 marks)

Q6.

This question is about metals and metal compounds.

(a) Iron pyrites is an ionic compound.

The diagram below shows a structure for iron pyrites.

Determine the formula of iron pyrites.

Use the diagram above.

(1)

(b) An atom of iron is represented $\frac{56}{48}$ Fe

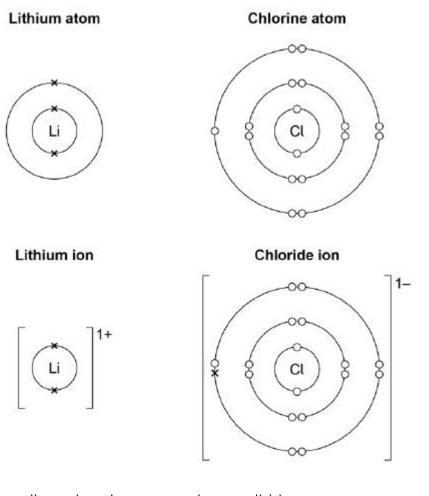
Give the number of protons, neutrons and electrons in this atom of iron.

Number of protons Number of neutrons

_____ Number of electrons

(3)

(c)	Iron is a transition metal.		
	Sodium is a Group 1 metal.		
	Give two differences between the properties of iron and so	odium.	
	1		
		_	
	2		
		_	
			(2)
Nicl	kel is extracted from nickel oxide by reduction with carbon.		
(d)	Explain why carbon can be used to extract nickel from	n nickel	
	oxide.		
		_	
		_	
		_	
			(2)
(e)	An equation for the reaction is:		
	NiO + C → Ni + CO		
	Calculate the percentage atom economy for the reaction	to produce	nickel
	Relative atomic masses (Ar): C = 12 Re kit ix 69 ormula mass	(Mr): NiO	
	= 75 Give your answer to 3 significant	figures.	
		_	
		_	
		_	
		_	
		_	
		_	
		<u>^</u>	
	Percentage atom economy =	%	(3)
		(Total 11 ma	• •


Q7.

This question is about metal compounds.

(a) Lithium reacts with chlorine to produce lithium chloride.

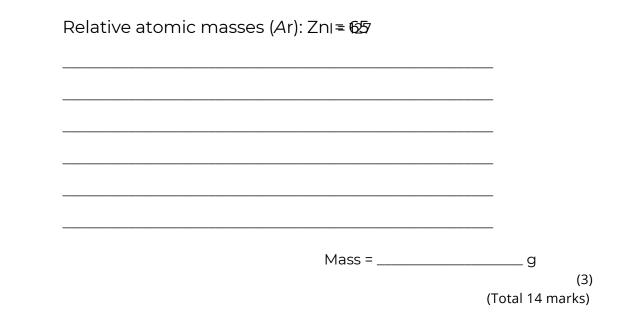
When lithium atoms and chlorine atoms react to produce lithium chloride, lithium ions and chloride ions are formed.

The diagram shows the electronic structures of the atoms and ions. The symbols o and x are used to represent electrons.

Describe what happens when a lithium atom reacts with a chlorine atom. Answer in terms of electrons.

			(4)
Zino	sulfate can be made by two methods.		
The	1. Use the equation: percentage atom economy = relative formula mass of ZnSO4 relative formula mass of ZnO4 + relative formula mass of H ₂ SO4 Give your answer to 3 significant figures. Relative formula masses (Mr): ZnO = 81 H2SO4 = 98 ZnSO4 =		
Met			
Met	hod 2: ZnCO3 + H2SO4 → ZnSO4 + H2O + CO2		
(b)	1.	Wfettlecid	
	percentage atom economy =		
	$\frac{\text{relative formula mass of } ZnSO_4}{\text{relative formula mass of } ZnO + \text{relative formula mass of } H_2SO_4} \times 10^{-10}$	00	
	Relative formula masses (<i>Mr</i>): ZnO = 81 H2SO4 = 98 ZnSO4 =	161	
	Percentage atom economy =	%	
(c)	Method I gives a higher percentage atom economy for mak	ring zing	(3) sulfati
(C)	than Method 2.		Sunat
		3h atom	
			(1)
(d)	A student uses 50 cm3 of a zinc sulfate solution of 80 g/dm3	,)	

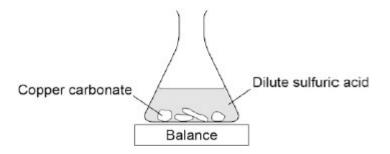
What mass of zinc sulfate is dissolved in 50 cm3 of this zinc sulfate solution?


	Mass = g	(2
	(Total 10 m	
8.		
	cientist produces zinc iodide (ZnI2).	
This	s is the method used.	
2. D 3. A	/eigh 0.500g of iodine. Dissolve the iodine in ethanol. .dd an excess of zinc. tir the mixture until there is no further change.	
	ilter off the excess zinc.	
6. E	vaporate off the ethanol.	
(a)	Ethanol is flammable.	
	Suggest how the scientist could carry out Step 6 safely.	
		(1)
(b)	Explain why the scientist adds excess zinc rather than excess	(1)
	iodine	
		(2)
		(3)

(c) Calculate the minimum mass of zinc that needs to be added to 0.500 g of iodine so that the iodine fully reacts.

The equation for the reaction is:

7n +	l2 → 7nl2
	$I \subset \rightarrow \Box I I I \subset$


	Relative atomic masses (<i>M</i> r): Zn = 65 I = 127		
		- -	
	Minimum mass of zinc =	g	(3)
A di	fferent scientist makes zinc iodide by the same method.		
The	scientist obtains 12.5g of zinc iodide.		
The	percentage yield in this reaction is 92.0%.		
(d)	What is the maximum theoretical mass of zinc iodide prod reaction?	uced in th	is
		-	
	Maximum theoretical mass =	g	(3)
(e)	Suggest one reason why the percentage yield in this rea	action is	
	not	100%.	
		-	(1)
(f)	The scientist makes a solution of zinc iodide with a concent 0.100 mol / dm3	tration of	
	Calculate the mass of zinc iodide (ZnI2) required to make 2 solution.	50 cm3 of	this

Q9.

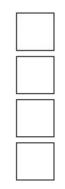
A student investigated the reaction of copper carbonate with dilute sulfuric acid.

The student used the apparatus shown in the figure below.

(a) Complete the state symbols in the equation.
 CuCO3 (___) + H2SO4 (aq) → CuSO4 (aq) + H2O (___) + CO2 (g)

(2)

(b) Why did the balance reading decrease during the reaction?


Tick one box.

The copper carbonate broke down.

A salt was produced in the reaction.

A gas was lost from the flask.

Water was produced in the reaction.

- (1)
- (c) Describe a safe method for making pure crystals of copper sulfate from copper carbonate and dilute sulfuric acid. Use the information in the figure above to help you.

In your method you should name all of the apparatus you will use.

(6)

(d) The percentage atom economy for a reaction is calculated using:

Relative formula mass of desired product from equation × 100 Sum of relative formula masses of all reactants from equation

The equation for the reaction of copper carbonate and sulfuric acid is:

CuCO3 + H2SO4 → CuSO4 + H2O + CO2

Relative formula masses : CuCO3 = 123.5; H2SO4 = 98.0; CuSO4 =

159.5 Calculate the percentage atom economy for making copper

sulfate from copper carbonate.

Atom economy = _____%

(3)

(e)	Give one reason why is it important for the percenta economy of a reaction to be as high as possible.	age atom
		(1) (Total 13 marks)
Q10.		
A s dilu	tudent investigated the reactions of copper carbonate and ute hydrochloric acid.	copper oxide with
Ink	both reactions one of the products is copper chloride.	
(a)	Describe how a sample of copper chloride crystals could copper carbonate and dilute hydrochloric acid.	be made from
		(4)
(b)	A student wanted to make 11.0 g of copper chloride.	
	The equation for the reaction is:	
	CuCO3 + 2HCl → CuCl2 + H2O + CO2	

Relative atomic masses, Ar: H = 1; C = 12; O = 16; Cl = 35.5; Cu = 63.5

Calculate the mass of copper carbonate the student should react with dilute hydrochloric acid to make 11.0 g of copper chloride.

	Mass	of copper ca	arbona	te =			g
	0.0	yield of copp er chloride					
	Actı	ual mass of c	copper	chloride (produce	ed =	
Look at t	he equa	tions for the	two re	actions:			
Reactio	on 1 C	CuCO3(s) + 2	HCl(aq) → CuCl2(aq) + H2	20(l) + CO	2(g)
Reactio	on	CuO(s) + 2	HCI(aq) → CuCl2(aq) + H2	2O(I)	
	formula	masses: Cu	0 = 79.	5; HCl = 36	5.5; CuCl	2 = 134.5;	H2O :
18 The perc	entage a	atom econoi	my for	a reaction	is calcu	ılated usi	ng:
		mass of de					× 10
Sum of	relative	formula ma	sses o	r all reacta	ants from	n equatio	n
Calculate	e the p	percentage	atom	econon	ny for	Reaction	า 2.
	Perce	entage atom	econc	my =			%
	n econor e the ato	entage atom my for React m economic	ion 1 is	68.45 %.			

(1) (Total 14 marks)

Q11.

(a) Nitrogen and hydrogen are passed over iron to produce ammonia in the Haber Process.

Balance the equation for the reaction.

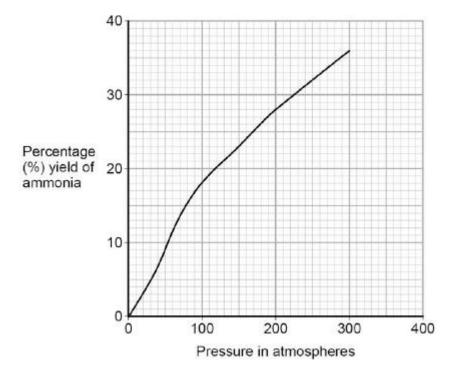
 $N2 + H2 \rightarrow NH3$

(1)

(b) What is iron used for in the Haber process?

Tick one box.

catalyst


fuel

monomer

reactant

(1)

(c) The figure below shows how the percentage yield of ammonia changes with pressure.

	Describe	the	trend	shown	in	the	figure	above.	
								_	
								_	
									(1)
(d)	Use the fig ammonia								
			ifforonoo	in noroon		iald of	ammania	<u> </u>	0/

Difference in percentage yield of ammonia = _____ % (2) (Total 5 marks)