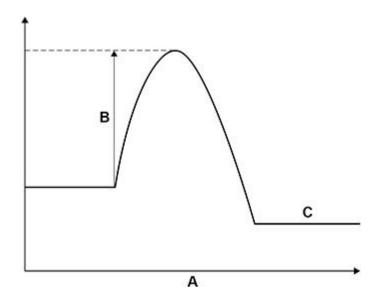
All questions are for both separate science and combined science students

Q1.

A student investigated the reactivity of metals with hydrochloric acid.

This is the method used.

- 1. Measure 50 cm3 of hydrochloric acid into a polystyrene cup.
- 2. Measure the temperature of the hydrochloric acid.
- 3. Add one spatula of metal powder to the hydrochloric acid and stir.
- 4. Measure the highest temperature the mixture reaches.
- 5. Calculate the temperature increase for the reaction.
- 6. Repeat steps 1 to 5 three more times.
- 7. Repeat steps 1 to 6 with different metals.


The table below shows the student's results.

	Tem	perature	increase	in °C	Mean
Metal	Trial 1	Trial 2	Trial 3	Trial 4	temperature increase in °C
Cobalt	6	7	5	9	7
Magnesium	54	50	37	55	Х
Zinc	18	16	18	20	18

Zin	С	18	16	18	20	18	
(a)	above.		·			X for magnes ur calculation	ium in the table
						X =	°C
(b)	Determir zinc.	ne the or	der of re	activity	for the m	netals cobalt, r	magnesium and
	Use the t	able abo	ove.				
	Most read	ctive					

	Least reactive	
		(1)
(c)	The range of measurements either side of the mean shows the un in the mean temperature increase.	certainty
	Complete the sentence.	
	Use the table above.	
	The mean temperature increase for zinc is 18 ±°C	
		(1)
(d)	What type of variable is the volume of hydrochloric acid in this investigation?	
	Tick (√) one box.	
	Control	
	Dependent	
	Independent	
		(1)
(e)	Suggest one way of improving step 3 in the method to give results are more repeatable.	which
	·	
		(1)
		(1)
(f)	The figure below shows a reaction profile for the reaction of magne	esium

with hydrochloric acid.

What do labels A, B and C represent on the figure above?

Choose answers from the box.

	activation energy	energy	overall energy change
	products	progress of reaction	reactants
Α			
В			
С			
			(Total 9 r

Q2.

This question is about the extraction of metals.

Element R is extracted from its oxide by reduction with hydrogen.

The equation for the reaction is:

(a) The sum of the relative formula masses (Mr) of the reactants (3 H2 + RO3) is 150

Calculate the relative atomic mass (Ar) of R.

Relative atomic masses (Ar)H = 1 O = 16

	Relative atomic mass (Ar) of R =	 (2)
၁)	Identify element R.	
	You should use: your answer to part (a)the periodic table.	
	Identity d ₹ =	
		(1)
c)	Carbon is used to extract tin (Sn) from tin oxide (SnO2).	
	The equation for the reaction is:	
	SnO2 + C → Sn + CO2	
	Calculate the percentage atom economy for extracting tin ir	n this reaction
	Relative atomic masses (Ar)C = 12 O = 16 Sn = 119	
	Percentage atom economy =	% (3)
d)	Tungsten (W) is a metal.	
	Tungsten is extracted from tungsten oxide (WO3).	
	All other solid products from the extraction method must be the tungsten. The table below shows information about three possible me tungsten from tungsten oxide.	

Method Reactant	Relative cost of reactant	Products
-----------------	---------------------------	----------

1	Carbon	Low	Tungsten solid Carbon dioxide gas Tungsten carbide solid
2	Hydrogen	High	Tungsten solid Water vapour
3	Iron	Low	Tungsten solid Iron oxide solid

valuate the three pessible methods for extracting tungs	ton from tungete
valuate the three possible methods for extracting tungs kide.	sten from tungste
	
	(4)
	(Total 10 marks)

Q3.

This question is about cycloalkenes.

Cycloalkenes are ring-shaped hydrocarbon molecules containing a double carbon-carbon bond.

Cycloalkenes react in a similar way to alkenes.

(a) Describe a test for the double carbon-carbon bond in cycloalkene molecules.

Give the result of the test.

|--|

 Result	 	 	

(b) The table below shows the name and formula of three cycloalkenes.

Name	Formula
Cyclobutene	C4H6
Cyclopentene	C5H8
Cyclohexene	C6H10

Determine the general formula for cycloalkenes.

Figure 1 shows the displayed structural formula of cyclohexene, C6H10

Figure 1

Chlorine reacts with cyclohexene to produce a compound with the formula C6H10Cl2

(c) Complete Figure 2 to show the displayed structural formula of C6H10Cl2

Figure 2

(2)

(2)

Relative	atomic	masses	(Ar):	Н	=	1	С	=	12	Cl	=	35.5
		F	Percer	ntag	e b	 у n	nas	s = .				%
											(Tc	ital 8 ma
This question	is about tl	he eleme	ents in	Gro	up	7 c	of th	ne p	perio	odic	tak	ole.
	the moltin	na points	s and l	boili	ng	ро	ints	of	son	ne o	f th	e elem
Table 1 shows	the meiti											C CICII
Table 1 shows		able 1										CCICIT
Table 1 shows		able 1	1		int i	'n°	C	7				CCICII
	T	able 1	1	g po	int i	in °	C					CCICIT
Element	T Melting p	able 1 oint in °C	1	g po -1		in °	C					CCICII
Element Fluorin	Melting po	able 1 oint in °C 20	1	g po –1 –	88	n°	C					CCICII
Element Fluorin e Chlorin e (a) What is the Bromin Use Table	Melting policy — 22 — 10 — 7	able 1 oint in °C 20 01	Boiling	g po -1 -	35 59	in °	C					CCICII
Element Fluorin e Chlorin e (a) What is the Bromin	Melting policy — 22 — 10 — 10 — 10 e state of k	able 1 oint in °C 20 01	Boiling	g po -1 -	35 59	in °	C					CCICII
Element Fluorin e Chlorin e (a) What is the Bromin Use Table	Melting policy — 22 — 10 — 10 — 10 e state of k	oint in °C 20 01	Boiling	g po -1 -	35 59	in °	C					
Fluorin e Chlorin e (a) What is the Bromin Use Table e Tick (√) o	Melting policy — 22 — 10 — 10 — 10 e state of k	oint in °C 20 01	Boiling	g po -1 -	35 59	in °	C					

Page 7 of 37

Use Table 1.

	Temperature = °C	(1)
(c)	Complete the sentences.	(1)
	Going down Group 7 the melting points	
	This is because the size of the molecules increases so the intermol forces	ecular
	·	(2)
A te	eacher investigated the reaction of iron with chlorine.	
The	e diagram below shows the apparatus used.	
	Iron	
Ch	ellorine gas in Excess chlorine gas out Heat Glass tube	
(d)	Why did the teacher do the investigation in a fume cupboard?	
	Tick (√) one box.	
	Chlorine gas is coloured.	
	Chlorine gas is flammable.	
	Chlorine gas is toxic.	
		(1)
(e)	The word equation for the reaction is:	
	iron + chlorine → iron chloride	
	Iron chloride is a solid.	
	The teacher weighed the glass tube and contents: • before the reaction	

What happened to the mass of the glass tube and contents during the

after the reaction.

Give one reason for your answer.

reaction?

	The mas	ss of the glass tube and contents	
	Reason		
			·=\
			(2)
		repeated the investigation with bromine gas and with iodine	gas
Гab	le 2 show	s the results.	
		Table 2	
Ele	ment	Observation	
Ch	lorine	Iron burns vigorously with an orange glow	
Bro	omine	Iron burns with an orange glow	
lod	line	Iron slowly turns darker	
	Use Tabl	e 2.	
			(1)
g)	Balance	the equation for the reaction between iron and bromine.	
		2Fe + Br2 → 2 FeBr3	(4)
	C - I I - +		(1)
(h)		e the relative formula mass (Mr) of FeBr3	
	Relative	atomic masses (Ar): Fe = 56 Br = 80	
		Relative formula mass (<i>M</i> r) =	
		` ,	(2)
		(Total 11 mark	(s)

Q5.

This question is about silver iodide.

Silver iodide is produced in the reaction between silver nitrate solution and sodium iodide solution.

The equation for the reaction is:

(a) A student investigated the law of conservation of mass.

This is the method used.

- 1. Pour silver nitrate solution into a beaker labelled A.
- 2. Pour sodium iodide solution into a beaker labelled B.
- 3. Measure the masses of both beakers and their contents.
- 4. Pour the solution from beaker B into beaker A.
- 5. Measure the masses of both beakers and their contents again.

The table below shows the student's results.

	Mass before mixing in g	Mass after mixing in g
Beaker A and contents	78.26	108.22
Beaker B and contents	78.50	48.54

Explain how the results demonstrate the law of conservatio	n of mass.
You should use data from table above in your answer.	
	(2)
Suggest how the student could separate the insoluble silve mixture at the end of the reaction.	r iodide from the

(1)

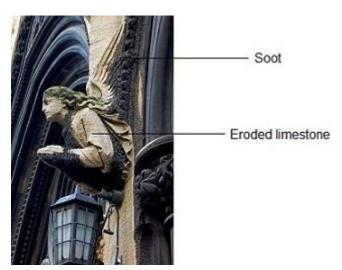
The student purified the separated silver iodide.

This is the method used.

(b)

•	Suggest one impurity that was removed by rinsing with water.	
		
		(1)
	Suggest why the student warmed the silver iodide.	(')
	Suggest willy the student wanned the silver loalde.	
		(1)
	Calculate the percentage atom economy for the production of silve in this reaction.	er io
	The equation for the reaction is:	
	AgNO3(aq) + Nal(aq) → Agl(s) + NaNO3(aq)	
	Give your answer to 3 significant figures.	
	Relative formula masses:	
	(Mr): AgNO3 = 170 NaI = 150 AgI = 235 NaNO3 = 85	
	Percentage atom economy (3 significant figures) =	%
		(4)
	Give one reason why reactions with a high atom economy are used industry.	in

(1) (Total 10 marks)


Q6.

This question is about atmospheric pollution.

The image below shows a limestone carving which has been damaged by atmospheric pollution.

The carving has been:

- blackened by soot
- eroded where the limestone has reacted with atmospheric pollutants.

(a) What reacted with the limestone to cause the erosion?Tick (√) one box.

Acid rain	
Ammonia	
Carbon monoxide	(a) (c)
Oxygen	

(1)

(b) Soot is produced by the incomplete combustion of diesel oil.

Complete the sentences.

Choose answers from the box.

	ammonia	carbon		methane		
	nitroge	en	oxygen			
	Incomplete combu	stion happens	when the	e is not eno	ugh	
	Incomplete combu	stion produces	s particles	of	·	
						(2)
:)	Complete the sente	ence.				
	Particles of soot in t	the atmospher	e cause gl	obal	•	
						(1)
d)	Carbon monoxide is	s produced by	the incom	plete combu	ustion of m	ethane
	Balance the equation	on for the reac	tion.			
	2 CH4	+ 3 O2 →	CO + 4	4 H2O		
						(1)
∋)	Car engines work a	t high tempera	atures.			
	Complete the sente	ences.				
	Choose answers fro	m the box.				
	air	methane	oxide	es of nitroger	ı	
	oxygen	petrol	sul	fur dioxide		
	In car engines, nitro	ogen is present	-			
	The nitrogen in car	engines come	s from		·	
	At high temperatur	es, the nitroge	n reacts w	rith		_•
	This reaction produ	ces				
					(Total 8 ma	(3) rks)

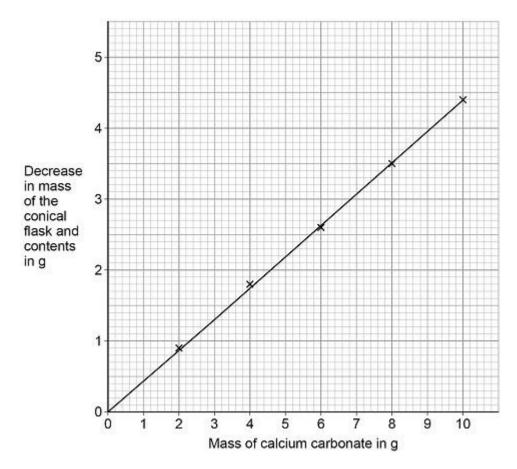
Q7.

A student investigated the reaction between lumps of calcium carbonate and dilute hydrochloric acid.

This is the method used.

- 1. Pour 100 cm3 of dilute hydrochloric acid into a conical flask.
- 2. Place the conical flask on a balance.

3. Ac	dd 2 g of calcium carbonate lum	ps to the	conical fla	ask.		
4. W	ait until the calcium carbonate :	stops rea	cting.			
5. Re	ecord the decrease in mass of th	e conical	flask and	contents.		
6. Re	epeat steps 1 to 5 three more tim	nes.				
The	equation for the reaction is:					
	CaCO3(X) + 2HCl(aq) → CaCl2(a	aq) + CO2	(g) + H2O	(1)		
(a) V	Vhat is the state symbol X in the	equation	า?			
	Tick (√) one box.					
	aq g	I	s [
						(1)
The	following table shows the stude	nt's resul	ts.			
		Result 1 R	Result 2 Re	sult 3 Resu	lt 4	
	Decrease in mass of the conication flask and contents in g	al 0.84	0.79	0.86	0.47	
(b) V	Vhy does the mass of the conica reaction? Tick (√) one box.	l flask an	d content	s decreas	e durinç	g the
	A gas escapes.					
	A new solution is made.					
	The dilute hydrochloric acid is	used up.				
	The calcium carbonate lumps size.	decrease	im			
(c)	What is the range of the four re	sults in tl	he table a	bove?		(1)
(-)	From				а	
		9	JO		IJ	(1)
(d)	Calculate the mean decrease in	n mass of	the conic	al flask an	d conte	nts.


Page 14 of 37

Do	not	include	the	anomalous	result.	Use	the	above.

A teacher demonstrated the investigation.

The teacher used different masses of calcium carbonate.

The following graph shows the teacher's results.

(e) What type of variable is the mass of calcium carbonate?

(1)

Tick (∕) one box.

Control

	Dependent	
	Independent	
		(1)
Use	e the graph to answer parts (f) and (g)	
(f)	Complete the sentence.	
	As the mass of calcium carbonate used increases, the decrease in r	mass of
	the conical flask and contents	
		(1)
(g)	What is the decrease in mass of the conical flask and contents whe sample of calcium carbonate is used?	en a 3 g
	Decrease in mass = g	(1)
	(Total 8 ma	(1) arks)
00		
Q8. Thi	is question is about the extraction of metals.	
(a)	Tungsten is a metal.	
	The symbol of tungsten is W	
	Tungsten is produced from tungsten oxide by reaction with hydrog	gen.
	The equation for the reaction is:	
	WO3 + 3 H2 → W + 3 H2O	
	Calculate the percentage atom economy when tungsten is product reaction. Use the equation:	ed in this
	percentage atom economy = $\frac{184}{(M_r \text{ WO}_3) + (3 \times M_r \text{ H}_2)} \times 100$	
	Relative formula masses (Mr): WO3 = 232 H2 = 2	

	Percentage atom economy =	_% (2)
Alu	minium is extracted from aluminium oxide.	(_/
(b)	38% of a rock sample is aluminium oxide. Calculate the mass of	
(2)	aluminium oxide in 40 kg of the rock sample.	
	- <u></u>	
	Mass of aluminium oxide = k	•
, ,		(2)
(c)	The formula of aluminium oxide is Al2O3	
	Calculate the relative formula mass (<i>Mr</i>) of aluminium oxide.	
	Relative atomic masses (Ar): $O = 16$ $Al = 27$	
	Trefactive formation (i.m)	_ (2)
(d)	60.0 kg of aluminium oxide produces a maximum of 31.8 kg of alu	minium
	In an extraction process only 28.4 kg of aluminium is produced frokg of aluminium oxide. Calculate the percentage yield.	m 60.0
	Give your answer to 3 significant figures.	
	Use the equation:	
	$percentage yield = \frac{mass of product actually made}{maximum theoretical mass of product} \times 100$	

	Percentage yield =	% (3)
(e)	Extracting metals by electrolysis is a very expensive process.	
	Explain why aluminium is extracted using electrolysis and n with carbon.	ot by reduction
	(Tot	(2) cal 11 marks)
Q9.		
	halogens are elements in Group 7.	
(a)	Bromine is in Group 7.	
	Give the number of electrons in the outer shell of a bromine	atom.
		(1)
(b)	Bromine reacts with hydrogen. The gas hydrogen bromide i	s produced.
	What is the structure of hydrogen bromide?	
	Tick one box.	
	Giant covalent	
	Ionic lattice	

AQA Chemistry GCSE - Chemical Measurements

	Metalli	c structure			
	Small r	nolecule			(1)
(c)	What is	the formula for f	luorine gas?		(1)
	Tick one	e box.			
	F				
	F ₂				
	F ²				
	2F				
					(1)
A st	udent m	ixes solutions of	halogens with so	lutions of their s	alts.
The	table be	low shows the st	udent's observat	ions.	
		Potassium chloride (colourless)	Potassium bromide (colourless)	Potassium iodide (colourless)	
	orine ourless)		Solution turns orange	Solution turns brown	
(ora	mine nge)	No change		Solution turns brown	
lodi (bro	ne wn)	No change	No change		
(d)	Explain	how the reactivi	ty of the halogen	ns changes going	g down Group 7.
	Use	the result	s in th	e table	above.

						(3)	
Аc	ompany uses	chlorine to p	oroduce tit	anium chlo	oride from t	titanium dioxide.	
(e)	What is the re	lative formu	ula mass (M	1r) of titaniu	um dioxide	, TiO2?	
	Relative ato	mic masses	(Ar): O = 16	5 Ti = 48			
	Tick one box	Κ .					
	64						
	80						
	128						
	768						
						(1)	
(f)		The company calculates that 500 g of titanium dioxide should produce 1.2 kg of titanium chloride.					
	However, th 900 g of tita			500 g of tita	anium diox	ide only produces	
	Calculate th	e percentag	ge yield.				
			Percent	tage yield =		% (2)	
						(Z) (Total 9 marks)	

Q10.

A student investigated the mass of copper oxide produced by heating copper carbonate.

This is the method used.

- 1. Weigh an empty test tube.
- 2. Weigh 2.00 g of copper carbonate into the test tube.
- 3. Heat the copper carbonate until there appears to be no further change.
- 4. Re-weigh the test tube and copper oxide produced.
- 5. Subtract the mass of the empty tube to find the mass of copper oxide.
- 6. Repeat steps 1-5 twice.
- 7. Repeat steps 1-6 with different masses of copper carbonate.

The table below shows the student's results.

Mass of copper	Mass of copper oxide in g				
carbonate in g	Trial 1	Trial 2	Trial 3	Mean	
2.00	1.29	1.27	1.31	1.29	
4.00	2.89	2.57	2.59	2.58	
6.00	3.85	3.90	3.87	3.87	
8.00	5.12	5.15	5.09	Х	
10.00	6.42	6.45	6.45	6.44	

The equation for the reaction is:

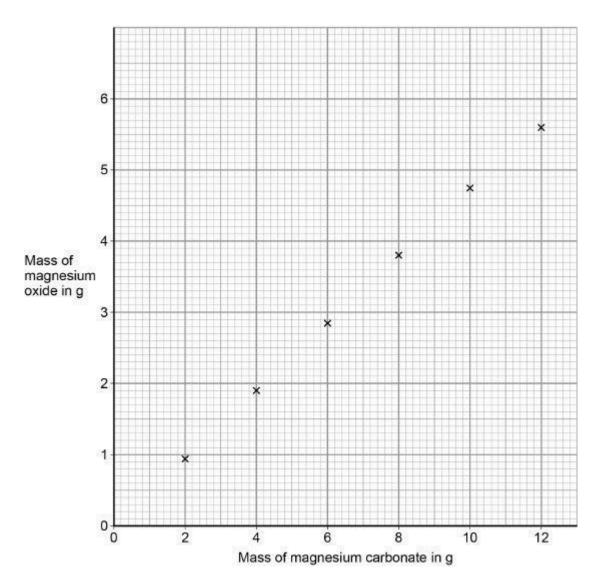
$$CuCO3(s) \rightarrow CuO(s) + CO2(g)$$

(a)	Complete the sentence.	
	The state symbol shows carbon dioxide is a	
(b)	Why do the contents of the test tube lose mass in the invest	(1) igation?
(c)	Calculate the mean mass X in the table above.	(1)
		q

(d) One of the results in the table above is anomalous.

(1)

AQA Chemistry GCSE - Chemical Measurements


	Which result is anomalous?	
	Mass of copper carbonate g Trial	
		(1)
(e)	Suggest how the investigation could be improved to make sure to is complete.	he reaction
		(2)

Another student repeated the investigation using magnesium carbonate instead of copper carbonate.

The word equation for the reaction is:

magnesium carbonate → magnesium oxide + carbon dioxide

The graph below shows the results of the investigation.

(f) Draw a line of best fit on the graph above.

(g) Determine the mass of magnesium oxide produced by 8.4 g of magnesium carbonate.

Use the graph above.

(1)

(h) Calculate the mass of magnesium oxide produced when 168 g of magnesium carbonate is heated.

Use your answer to part (g)

	Mass of m	nagnesium oxid	de produced =	9
				(Total 10 mar
1				
	er cars are tested eac	h year to meas	sure the amount	of pollutants con
	xhaust fumes.		II a a al . a a a a . a ha .	
	table below shows th petrol cars.	ie maximum a	nowed percentag	ges of exhaust po
		Massinassas		
	Age of car		owed percentage aust pollutant	
	in years	Carbon monoxide	Unburned hydrocarbons	
	16-24	0.30	0.02	
	3-16	0.20	0.02	
(b)	Suggest two reasons monoxide has been			
(b)				
(b)	monoxide has been			
(b)	monoxide has been			
(b)	monoxide has been 1			ercentage of carb
(b)	monoxide has been 1			

		- (1)
Ovi	des of nitrogen are also pollutants contained in exhaust fum	(1)
(d)	Describe how oxides of nitrogen are produced when petrol engines.	
		(2)
	alytic converters are fitted to car exhausts to reduce the amo eased into the atmosphere.	ount of pollutants
(e)	Nitrogen dioxide is an oxide of nitrogen.	
	Nitrogen dioxide reacts to produce nitrogen and oxygen in converters. Complete the equation for this reaction.	catalytic
	The equation should be balanced.	
	$MO_{g}(g) \rightarrow MO_{g}(g)$	
(6)		(2)
(f)	Give two effects of atmospheric pollution which are reduced catalytic converters.	d by using
	1.	
		_
	2.	-
		-
		(2)
(g)	The catalyst in catalytic converters is a mixture of three elements	ments.
	Where in the periodic table are these elements most likely	to be found?
	Tick one box.	
	Alkali metals	

Halogens		
Noble gases		
Transition me	tals	
		(1)
		(Total 12 marks)

Q12.

A student investigated the law of conservation of mass.

The law of conservation of mass states that the mass of the products is equal to the mass of the reactants.

This is the method used.

- 1. Pour lead nitrate solution into a beaker labelled A.
- 2. Pour potassium chromate solution into a beaker labelled B.
- 3. Measure the mass of both beakers and contents.
- 4. Pour the solution from beaker B into beaker A.
- 5. Measure the mass of both beakers and contents again.

When lead nitrate solution and potassium chromate solution are mixed, a reaction takes place.

This is the equation for the reaction:

(b) The table shows the student's results.

	Mass in g
Beaker A and contents before mixing	128.71
Beaker B and contents before mixing	128.97
Beaker A and contents after mixing	154.10
Beaker B after mixing	103.58

(1)

from	the	table	above
			
What is th table?	e resolution of the b	alance used to ob	tain the results i
Tick (✔) or	ne box.		
0.01g	0.1g	1g	100g
	the relative formula		
Relative a	atomic masses (Ai	r): N = 14 O =	16 Pb = 207
Relative 6	atomic masses (Ai	r): N = 14 O =	16 Pb = 207
Relative 6	atomic masses (Ai	r): N = 14 O =	16 Pb = 207
Relative 6		formula mass =	
	Relative	formula mass =	
The formu		formula mass = omate is K2CrO4	
The formu	Relative Ila of potassium chro	formula mass = omate is K2CrO4 ion is +1	
The formu The charg What is th	Relative Ila of potassium chro e on the potassium i e formula of the chr	formula mass = omate is K2CrO4 ion is +1	
The formu The charg What is th	Relative Ila of potassium chro e on the potassium i e formula of the chr	formula mass = omate is K2CrO4 ion is +1	
The formu The charg What is th Tick (√) or	Relative Ila of potassium chro e on the potassium i e formula of the chr	formula mass = omate is K2CrO4 ion is +1	

	CrO ₄ ²⁻	
		(1)
(f)	Another student also tests the law of conservation of mass method.	using the same
	The student uses a different reaction.	
	This is the equation for the reaction.	
	Na2CO3(aq) + 2HCI(aq) → 2NaCI(aq) + CO2(g) + H2O(I)	
	Explain why this student's results would not appear to suppose conservation of mass.	port the law of
		(3)

Q13.

This question is about hydrocarbons.

The table gives information about four hydrocarbons.

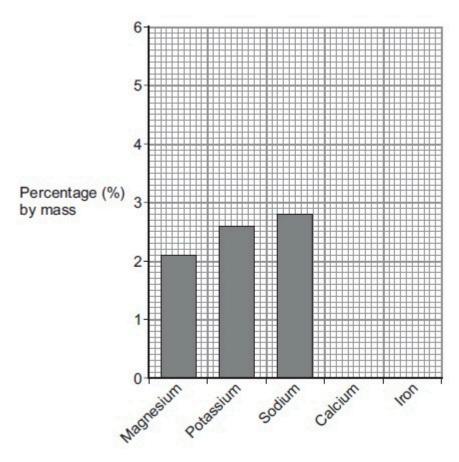
The hydrocarbons are four successive members of a homologous series.

(Total 10 marks)

Hydrocarbon	Formula	Boiling point in °C
Α	C4H10	0
В		36
С	C6H14	69
D	C7H16	98

(a) What is the formula of hydrocaBoon

Tick (\checkmark) one box.


	C4Hz	
	C5H ₂	
	C5H ₂	
	C6H₂	
		(1)
(b)	What is the simplest ratio of carbon : hydrogen atoms in a molecule hydrocarbon A?	of
	Ratio = 2 :	
		(1)
(c)	Which hydrocarbon is a gas at room temperature (25 °C)?	
	Tick (√)one box.	
	A	(1)
(d)	Which hydrocarbon is most flammable?	. ,
` ,	Tick (√)one box.	
	TOTAL TOTAL BOX.	
	A B C D	(1)
(e)	Which two substances are produced when a hydrocomposetely combusts in air?	(1)
	Tick (√) two boxes.	
	Carbon	
	Carbon dioxide	
	Hydrogen	
	Sulfur dioxide	

	Water		
			(2)
The	diagram shows the	e displayed structure of a hydrocarbon molecule.	
		H H H H - C - C - C - H H H H	
(f)	What is the name	of the hydrocarbon in the diagram above?	
	Tick (✔) one box.		
	Butane		
	Ethane		
	Methane		
	Propane		
			(1)
(g)	Calculate the reabove.	elative formula mass (Mr) of the hydrocarb	oon in the diag
	Relative atomic	c masses (Ar): H = 1 C = 12	
		Relative formula mass (<i>M</i> r) =	
		(Total 9 ma	(2) arks)
Q14. Met	als are extracted fr	om ores in the Earth's crust.	
(a)	Why is copper use	ed in the manufacture of computers?	
	Tick (√) one box.		

Because it has a high density.		
Because it does not react with water.		
Because it is a good conductor of electricity.		
		(1)

(b) Figure 1 shows the percentage (%) by mass of some metals in the Earth's crust.

Figure 1

(i) What is the percentage by mass of magnesium in the Earth's crust?

_____%

(ii) On Figure 1 draw the bars for:

- · calcium at 3.6% by mass
- · iron at 5.0% by mass.

(2)

(c) An ore of zinc contains zinc carbonate.

The	equation for the	reaction when zinc carbonate is heated is:	
ziı	ZnCO ₃ – nc carbonate	→ ZnO + CO ₂ zinc oxide carbon dioxide	
(i)	What is the nan	me of this type of reaction?	
	Tick (√) one bo	DX.	
	corrosion		
	decomposition	1	
	electrolysis		
			(1)
(ii)	Which substance °C)?	ce in the equation is a gas at room temperat	ure (20
	Tick (√) one bo	DX.	
	zinc carbonate		
	zinc oxide		
	carbon dioxide		
			(1)
(iii) (•	ole below to show the number of atoms of ca ormula of zinc carbonate.	arbon and
	Element	Number of atoms in the formula ZnCO3	
	zinc, Zn	1	
	carbon, C		
	oxygen, O		
			(2)
(iv)	When 125 g zin	c carbonate is heated, 81 g zinc oxide is prod	uced.
	Calculate the m	nass of carbon dioxide produced.	
		Mass of carbon dioxide =	_9
			(1)

(d) Figure 2 shows a simple life cycle of a car body.

Quarry iron ore

| Extract iron in a blast furnace | Convert iron into steel |
| Make a car body |
| Recycle the steel | Use the car |

What is one reason why iron from the blast furnace is converted into (i) steel? Tick (✓) one box. To make the iron pure. To make the iron more brittle. To make alloys for specific uses. (1) (ii) Apart from cost, give three different reasons why steel should be recycled. 1. 2. 3.

(Total 13 marks)

Q15.

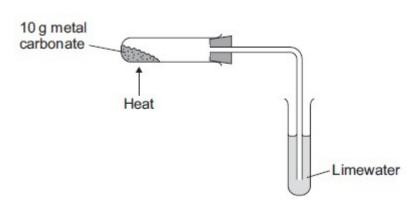
Metals are extracted from ores in the Earth's crust.

Some ores contain metal carbonates and some ores contain metal oxides.

(a) (i) Name the type of reaction that happens when a metal carbonate is heated.

(ii) Which solid product is formed when copper carbonate is heated?

Tick (\checkmark) one box.	
copper	
copper nitrate	
copper oxide	
copper sulfide	


(1)

(1)

(b) A student investigated heating four metal carbonates.

Figure 1 shows the apparatus used.

Figure 1

The student heated each metal carbonate for five minutes.

The table below shows the results.

Metal carbonate	Mass of metal	Mass of solid after heating	Observations
	carbonate at	for 5 minutes	

	start in g	in g	
Copper carbonate	10.0	6.9	Limewater turns cloudy
Magnesium carbonate	10.0	9.1	turns cloudy
Potassium carbonate	10.0	10.0	does not turn Cloudy Limewater
Zinc carbonate	10.0	8.3	turns cloudy

Suggest which me	how the reactivity series can be used to etal carbonate reacts most easily when heat	predict ed.
		

(c) Figure 2 shows a simple life cycle of a car body.

Figure 2

(i)	Complete the sentence.
-----	------------------------

Iron ores must contain enough iron to

(1)

(ii) Some iron ores contain iron oxide (Fe2O3).

Complete and balance the equation for a reaction to produce iron from iron oxide.

$$\underline{\qquad} Fe2O3 + \underline{\qquad} C \rightarrow \underline{\qquad} + \underline{\qquad}$$
CO2

(2)

(iii) Give two reasons why iron produced in a blast furnace is converted into steel.

(2)

(iv) When a car reaches the end of its useful life, the car body can be:

sent to landfill.

not

AQA Chemistry GCSE - Chemical Measurements

reused	or	sent	to	landfill.
				(3) (Total 15 marks)