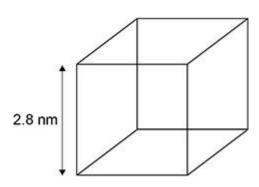

All questions are for separate science students only

Q1				
		question is about elements, comp		
	(a)	Substance A contains only one type	pe of atom.	
		Substance A does not conduct ele	ectricity.	
		Which type of substance is A?		
		Tick (√) one box.		
		Compound		
		Metallic element		
		Mixture		
		Non-metallic element		
				(1)
	(b)	Substance B contains two types o	f atoms.	
		The atoms are chemically combin	ed together in fixed proportions.	
		Which type of substance is B?		
		Tick (√) one box.		
		Compound		
		Metallic element		
		Mixture		
		Non-metallic element		(7)
	(c)	What is the name of the elements	in Group 0 of the periodic table?	(1)
	(-)	Tick (\checkmark) one box.		
		11011 (4) 0110 0011		

	Alkali metals		
	Halogens		
	Noble gases		
	Transition metals		(1)
(d)	Which statement about the elem	ents in Group 0 is correct?	.,
	Tick (√) one box.		
	All elements in the group are ver reactive. All elements in the group form n ions. The boiling points increase down group. The relative atomic masses (Ar) decrease down the group.	ega tive	(1)
(e)	Neon is in Group 0.		
	What type of particles are in a sar	mple of neon?	
	Tick (√) one box.		
	Atoms		
	lons		
	Molecules		
(£)			(1)
(f)	Figure 1 represents part of the stru Figure		
	rigure	I	

Page 2 of 16

Determine the empirical formula of this oxide.


Empirical formulaXO____

(1)

A nanoparticle of a metallic element is a cube.

Figure 2 shows a diagram of the nanoparticle.

Figure 2

(g) The surface area of a cube is given by the equation:

surface area = (length of side) 2×6

Calculate the surface area of the cube in Figure 2. Give your answer to 2 significant figures.

	Surface area (2 significant figures) = nm2	(3)
(h)	Fine and coarse particles of the metallic element are also cubes.	
	The length of a fine particle cube is 10 times smaller than the length of coarse particle cube. How does the surface area to volume ratio of the fine particle cube compare with that of the coarse particle cube? Tick (\(\subset \)) one box.	fa
	Both surface area to volume ratios are the same. The surface area to volume ratio of the fine particle is 10 times greater. The surface area to volume ratio of the fine particle is 10 times smaller.	
		(1)

O2.

This question is about the rate of the reaction between hydrochloric acid and calcium carbonate.

A student investigated the effect of changing the size of calcium carbonate lumps on the rate of this reaction.

(Total 10 marks)

This is the method used.

- 1. Pour 40 cm3 of hydrochloric acid into a conical flask.
- 2. Add 10.0 g of small calcium carbonate lumps to the conical flask.
- 3. Attach a gas syringe to the conical flask.
- 4. Measure the volume of gas produced every 30 seconds for 180 seconds.
- 5. Repeat steps 1 to 4 using 10.0 g of large calcium carbonate lumps.

The student calculated the number of moles of gas from each volume of gas measured.

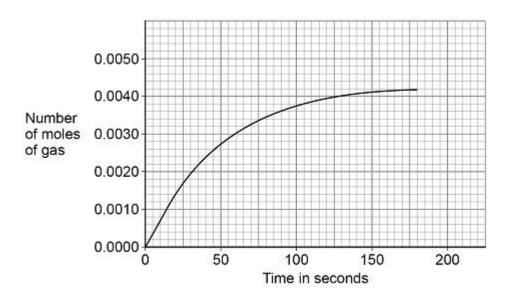
The table below shows the student's results for large calcium carbonate lumps.

Time in seconds	Number of moles of gas
0	0.000
30	0
60	0.0011

0.002

90	0.002
120	8
150	0.003
180	4

0.003


0

The student plotted the results for small calcium carbonate lumps on the graph below.

0.004 (a) Complete the graph below.

You should:

- plot the data for large calcium carbonate lumps from the table above
- draw a line of best fit.

(3)

Determine the mean rate of reaction for small calcium carbonate lumps between 20 seconds and 105 seconds.

Give the unit.

Use the graph above.

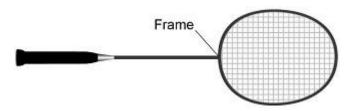
	Mean rate of reaction = Unit	
		(4)
c)	The student concluded that the large calcium carbonate lump more slowly than the small calcium carbonate lumps.	s reacted
	How do the student's results show that this conclusion is corre	ct?
		(1)
	difference in the rates of reaction of large lumps and of small lucium carbonate depends on the surface area to volume ratios of	
he	diagram below shows a cube of calcium carbonate.	·
d)	Calculate the surface area to volume ratio of the cube in ab	ove
	diagram. Give your answer as the simplest whole number re	atio.
	Surface area : volume =:	(3)
e)	A larger cube of calcium carbonate has sides of 5 cm	
	Describe how the surface area to volume ratio of this larger cu from that of the cube shown in the diagram above.	be differs
		(1)
	(Tota	ıl 12 marks)

Q3.

This question is about materials and their properties.

(a) Figure 1 shows a carbon nanotube.

Figure 1



The structure and bonding in a carbon nanotube are similar to graphene. Carbon nanotubes are used in electronics because they conduct electricity. Explain why carbon nanotubes conduct electricity.

(2)

(b) Figure 2 shows a badminton racket.

Figure 2

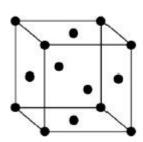
The following table shows some properties of materials.

The materials could be used to make badminton racket frames.

Material	Density in g/cm ³	Relative strength	Relative stiffness
Aluminium	2.7	0.3	69
Carbon nanotuk	e 1.5	60	1000
Wood	0.71	0.1	10

frames.	Use	the	table	above.
oxide can b	pe produced as	nanoparticles	s and as fine part	icles.
	ne produced as			icles.
A nanopart		de is a cube of	side 82 nm	cicles.
A nanopart	ticle of zinc oxid	de is a cube of	side 82 nm	icles.
A nanopart	ticle of zinc oxid	de is a cube of oparticle of zi	side 82 nm	cicles.
A nanopart	ticle of zinc oxid	de is a cube of oparticle of zi Figure 3	side 82 nm	cicles.
A nanopart Figure 3 re	ticle of zinc oxide presents a nan	de is a cube of aparticle of zi	side 82 nm	

		Surface area =	_ nm2	(1)
((d)	Some suncreams contain zinc oxide as nanoparticles or as f	ine partic	les.
		Suggest one reason why it costs less to use nanoparticles raparticles in suncreams.	ither thar	n fine
		(Т	otal 10 ma	(1) rks)
Q4. 1	Γhis	question is about structure and bonding.		
(a)	Complete the dot and cross diagram to show the covalent kinitrogen molecule, N2 Show only the electrons in the outer shell.	onding i	n a
,				(2)
((b)	Explain why nitrogen is a gas at room temperature. Ans terms of nitrogen's str	wer in ucture.	
((c)	Graphite and fullerenes are forms of carbon. Graphite is soft and is a good conductor of electricity.		(3)
		oraprine is sortaina is a good conductor or electricity.		


(d)

Explain why graphite has th	nese properties. Answer in	terms of
structure	and	bonding.
		(4)
Figure 1 shows a model of a B	uckminsterfullerene moled ure 1	cule.
- Ing	———	
A lubricant is a substance tha easily.	t allows materials to move	over each other
Suggest why Buckminsterfull	erene is a good lubricant.	
Use Figure 1.		

Silver can form cubic nanocrystals.

Figure 2 represents a silver nanocrystal.

Figure 2

area	to	volume	ratio	of	the	nanaar (stal	
area	ιο		ratio			nanocrystal.	
							
		Surface a	rea to volu	ıme rat	io =		
		Surface a	rea to volu	ıme rat	io =		_
Silver ı	nanopai					o prevent foot	_
		ticles are sc	metimes	used ir	n socks t		_
odour. rather		rticles are so st why it is arse	metimes	used ir	n socks t	o prevent foot	_
odour. rather	Sugge:	rticles are so st why it is arse	metimes	used ir	n socks t	o prevent foot	_
odour. rather	Sugge:	rticles are so st why it is arse	metimes	used ir	n socks t	o prevent foot	_
odour. rather	Sugge:	rticles are so st why it is arse	metimes	used ir	n socks t	o prevent foot	

Q5.

The figure below shows magnesium burning in air.

© Charles D Winters/Science Photo Library

		,		3	
(a)	Look at the fig	gure above. Hov	w can you tell that	t a chemical	
	reaction	is	taking	place?	
				(1)	
(b)	Name the prod	uct from the reac	tion of magnesium i	n the figure.	
				(1)	
(c)	The magnesium needed heating before it would react.				
	What conclusio	n can you draw fi	rom this?		
	Tick one box.				
	The reaction is	reversible			
	The reaction ha	as a high activatio	on energy		
	The reaction is	exothermic			
	Magnesium ha	s a high melting	point		

		(1)
(d)	A sample of the product from the reaction in the figure above was a water and shaken.	dded to
	Universal indicator was added.	
	The universal indicator turned blue.	
	What is the pH value of the solution?	
	Tick one box.	
	1	
	4	
	7	
	9	
		(1)
(e)	Why are nanoparticles effective in very small quantities?	
	Tick one box.	
	They are elements	
	They are highly reactive	
	They have a low melting point	
	They have a high surface area to volume ratio	
		(1)
(f)	Give one advantage of using nanoparticles in sun creams.	
		(1)
(g)	Give one disadvantage of using nanoparticles in sun creams.	
		(1)

(h)	A co a di	oarse particle has a diameter of 1 × 10-6 m. A nanopartion ameter of 1.6 × 10-9 m.	cle has	
	Cald	culate how many times bigger the diameter of the	coarse	
	•	ticle is n the diameter of the nanoparticle.		
				(2)
		(**	Total 9 mark	
Q6.				
This	s que	stion is about atoms, molecules and nanoparticles.		
(a)	Diff	erent atoms have different numbers of sub-atomic parti	cles.	
	(i)	An oxygen atom can be represented 20		
		Explain why the mass number of this atom is 16.		
		You should refer to the numbers of sub-atomic particle nucleus of the atom.	es in the	
			-	
			-	
			-	
			-	
			-	
			-	
			((2)
	(ii)	Explain why 6C and 6C are isotopes of carbon.		
		You should refer to the numbers of sub-atomic particle nucleus of each isotope.	es in the	
			-	

			(3)
(b)	Hyc mol	drogen atoms and oxygen atoms chemically combine to plecules.	oroduce water
	(i)	Complete the figure below to show the arrangement of electrons of the hydrogen and oxygen atoms in a molecular dots (·) or crosses (×) to represent the electrons.	
		H O H	
	(ii)	Name the type of bonding in a molecule of water.	(2)
	(11)	Name the type of bonding in a molecule of water.	
			(1)
	(iii)	Why does pure water not conduct electricity?	
			
			(1)
(c)		noparticles of cobalt oxide can be used as catalysts in the progen from water.	oroduction of
	(i)	How does the size of a nanoparticle compare with the si atom?	ze of an
			(1)

(ii) Suggest one reason why 1 g of cobalt oxide nanoparticles is a better catalyst than 1g of cobalt oxide powder.

AQA Chemistry GCSE - Bi	lik and Surface Properties of Matter	
		(-)
		(1)
		(Total 11 marks)