Mark schemes

Q1. (a)	non-metallic element		
		1	
(b)	compound	1	
(c)	noble gases	1	
(d)	the boiling points increase down the group	1	
(e)	atoms	1	
(f)	X02	1	
(g)	(2.8)2 × 6	1	
	= 47.04	1	
	= 47 (nm2) allow an answer correct to 2 significant figures resulting from an incorrect attempt at the calculation	1	
(h)	the surface area to volume ratio of the fine particle is 10 times greater	1	[10]
Q2. (a)	all seven points plotted correctly allow a tolerance of ±½ small square allow 1 mark for five or six points plotted correctly	2	
	line of best fit	1	
(b)	0.0038and 0.0014	1	
	<u>0.0038 - 0.0014</u> 105 - 20		
	allow correct use of incorrectly		

	determined mole value(s)	1	
	= 0.000028 or		
	= 2.8 × 10-5	1	
	mol/s allow moles per second	1	
(c)	(for large lumps) a smaller number of moles of gas is collected in the same time		
	or (for large lumps) more time is needed to collect the same number of moles of gas or		
	the line (of best fit for large lumps) is less steep		
	allow converse statement for small lumps		
	allow the line (of best fit for large lumps) takes more time to become horizontal	1	
(d)	(surface area = 6 x 0.5 x 0.5) = 1.5 (cm2)	1	
	(volume = 0.5 x 0.5 x 0.5) = 0.125 (cm3)	1	
	(surface area : volume =) 12 : 1		
	allow correctly calculated ratio using incorrectly calculated values for surface area and/or volume	1	
(e)	decreases by a factor of 10		
(e)	allow 10 times smaller		
	allow one tenth		
	allow 1/10		
	allow 1 : 10 (large cube to small cube)	1	
			[12]
Q3.			
(a)	contain delocalised electrons allow contain free electrons	1	
	(so) electrons can move through the structure / nanotube allow (so) electrons can carry charge through the structure / nanotube		

	ignore throughout for through ignore current / electricity for charge	1
(b)	Level 2: Some logically linked reasons are given. There may also be a simple judgement.	3–4
	Level 1: Relevant points are made. They are not logically linked.	1-2
	No relevant content	0
	Indicative content	
	 wood is the least dense so lightest to use aluminium is the most dense so will make the racket too heavy 	
	 carbon nanotube is the strongest so least likely to break 	
	 wood / aluminium are too weak so the racket will break more easily 	
	• carbon nanotube is the stiffest so least likely to bend out of	
	 shape wood / aluminium are not very stiff so could bend out of shape 	
	justified conclusion	
(c)	an answer of 4.0 x 104 (nm2) scores 3 marks an answer of 40344 (nm2) scores 2 marks	
	(822 =) 6724 (nm2)	
		1
	(6 x 6724 =) 40344 (nm2) allow 40344 (nm2) correctly rounded to any number of significant figures allow correct calculation using incorrectly calculated value of area of one face from step1	1
	= 4.0 x 104 (nm2) allow 4.0344 x 104 (nm2) correctly rounded to 1 or more significant figures allow a correctly calculated and rounded conversion to standard form of an incorrect calculation of surface area	1
(d)	allow converse statements about fine particles	

any one from:

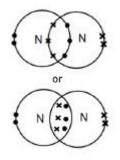
- less can be used (for the same effect)
 ignore nanoparticles are smaller
 - greater surface area (to volume ratio)

1 [10]

1

1

1


Q4.

(a) six electrons in the overlap

allow dots, crosses or e(-) for electrons

2 non-bonding electrons on each nitrogen atom

2 marks for an answer of:

(b)	weak forces	1
	between molecules or intermolecular do not allow references to covalent bonding	
	between molecules	1
	(which) need little energy to overcome	1
(c)	each (carbon) atom forms three covalent bonds	1
	forming layers (of hexagonal rings)	1
	(soft) (because) layers can slide over each other	1
	(conducts electricity) (because of) delocalised electrons	1
(d)	molecules are spherical	1

	(so molecules) will roll	1	
(e)	surface area (= 20 × 20 × 6) = 2400 (nm2)	1	
	volume (= 203) = 8000 (nm3)	1	
	ratio = 0.3 (nm3): 1 (nm 3) ratio = 0.3 (nm3): 1 (nm3) or 1 (nm3): 3.33 (nm3)		
	1 (mm5). 5.55 (mm5)	1	
(f)	(nanoparticles) have a larger surface area to volume ratio	1	
	so less can be used for the same effect	1	[16]
Q5.			
(a)	any one from:		
	 there was a flame energy was given out a new substance was formed the magnesium turned into a (white) powder answers must be from the figure 	1	
		I	
(b)	Magnesium oxide	1	

- (c) The reaction has a high activation energy
- (d) 9

1

1

1

1

1

- (e) They have a high surface area to volume ratio
- (f) any one from:
 - Better coverage
 - More protection from the Sun's ultraviolet rays
- (g) any one from:

•	Potential cell damage to the body
•	Harmful effects on the environment

(h)	and use	cation of $\frac{1}{1.6} = 0.625$ of indices $10-9 - 10-6 = 103$ Both steps must be seen to score first mark $25 \times 1000 = 625$ (times bigger)	1	[9]
Q6. (a)	(i)	(mass number = 16) because there are 8 protons and 8 neutrons (the nucleus) accept mass number is total number of protons and neutrons for 1 mark		
	(ii)	same number of protons or both have 6 protons accept same atomic number	2	
		¹² C has 6 neutrons ¹⁴ C has 8 neutrons	1	
		accept different number of neutrons for 1 mark numbers, if given, must be correct incorrect reference to electrons = max 2 marks	1	
(b)	(i)	2 bonding pairs additional unbonded electrons negates this mark	1	
		4 unbonded electrons around oxygen accept dot, cross or e or – or any combination	1	
	(ii)	covalent	1	
	(iii)	 any one from: no delocalised / free electrons <i>ignore mobile electrons</i> no overall electric charge accept no charge (carriers) no ions do not accept any implications of the presence of ions 	1	
(c)	(i)	larger		

accept the size of a few hundred atoms

		accept atoms are smaller (than nanoparticles) allow up to 1000 atoms)	1	
(ii	i) (nar	anoparticles have) large(r) surface area	1	[11]