All questions are for both separate science and combined science students

(a)	Give two observations you could make when a small piece of potassium is added to water. 1					
	2					
(b)	Complete the equation for the reaction of potassium with water.					
	You should balance the equation.					
	K + H2O → +					
(c)	Explain why the reactivity of elements changes going down Group 1.					
Sodi	um reacts with oxygen to produce the ionic compound sodium oxide.					
Оху	gen is a Group 6 element.					
(d)	Draw a dot and cross diagram to show what happens when atoms of sodium and oxygen react to produce sodium oxide.					
	Diagram					

Page 1 of 42

Why is oxygen described as being reduce and oxygen?	d in the reaction between sodium
Explain why sodium oxide has a high melt	
	(Total 16 r

Q2.

The table below shows information about four substances. (a)

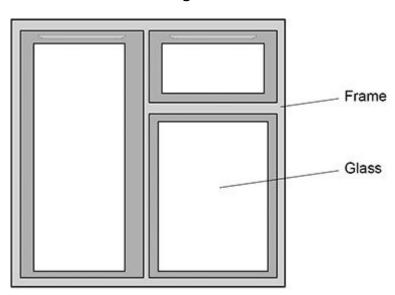
Substance	Melting point in °C p	Boiling oint in °C	Does it conduct electricity in the e solid state?	Does it conduct lectricity in the liquid state?
А	-117	79	No	No
В	801	1413	No	Yes
С	1535	2750	Yes	Yes
D	1610	2230	No	No

Which substance could be a metal?

Tick (\lor) one box.

Α		В		С	3	D	3	
---	--	---	--	---	---	---	---	--

(1)


stı of zi	udent wants to compare the reactivity of an unknown metal, Q, with tha inc.
Botl	n metals are more reactive than silver.
The	student is provided with:
•	silver nitrate solution
•	metal Q powder
•	zinc powder
•	a thermometer normal laboratory equipment.
No (other chemicals are available.
Q w	cribe a method the student could use to compare the reactivity of meta ith that of zinc. r method should give valid results.

Q3.

This question is about substances used to make windows and window frames.

Figure 1 shows a window.

Figure 1

(a) Glass is made by he	ating sand witr	า two otner	materials
-------------------------	-----------------	-------------	-----------

Which two other materials are used to make glass?

Tick (\lor) two boxes.

Clay	
Graphite	8 8
Limestone	
Sodium carbonate	8 8
Sodium hydroxide	3 0

(2)

Window frames need to be:

- easy to install
- resistant to damage.

The polymers poly(chloroethene) and HDPE are used to make window frames.

Table 1 shows information about poly(chloroethene) and HDPE.

Table 1

Property	Poly(chloroethene)	HDPE
Density in g/cm3	1.4	0.92
Relative strength	72	25

to make window frames.
Give one reason for your answer.
Use Table 1.
Advantage
Reason
Suggest one advantage of using HDPE compared with poly(chloroethene) to make window frames.
Give one reason for your answer.
Use Table 1.
Advantage
Reason

Figure 2

$$\begin{pmatrix} H & Cl \\ -C & -C \\ -1 & -1 \\ H & H \end{pmatrix}_{D}$$

Which monomer is used to make poly(chloroethene)?

Tick (\lor) one box.

H H		
C = C		3 6
H C	l	Ø
C=C H H		8 6
CI CI C=C	Į.	3
Cl H		8 0
Cl Cl C=C		(3) (7)
Cl Cl		

(e) Chlorine gas is used to produce poly(chloroethene).

Describe a test to identify chlorine gas.

Give the result of the test.

(2)

(1)

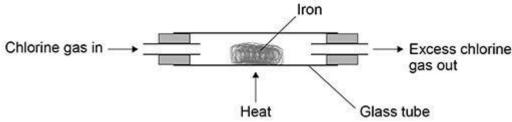
- (f) Wood can be used instead of polymers to make window frames.
 - Polymers are unreactive.
 - Polymers are produced from crude oil.

- Wood breaks down in wet conditions.
- Wood is produced from trees.

Advantage of		
low frames can also b	e made from an alloy of a	luminium.
6.00 kg of the alloy is	s used to make a window	frame.
Table 2 shows the m	ass of each element in 6.	00 kg of the alloy.
	Table 2	
Element	Mass in kg	
Aluminium	5.94	
Magnesium	0.04	
Silicon	0.02	
Calculate the percer	ntage of aluminium in 6.00) kg of the alloy
catediate the percer	rtage of atammam m o.o.	ong of the unoy.
	Percentage of alur	ninium =%

Q4.

This question is about the elements in Group 7 of the periodic table.


Table 1 shows the melting points and boiling points of some of the elements.

(Total 14 marks)

Table 1

Element	Melting point in °C B	oiling point in °C
Fluorine	-220	-188
Chlorine	-101	-35
Bromine	-7	59

Bro	mine	-7	59		
(a) V	Vhat is the s	tate of bromine at 100) °C?		
	Use Table	1.			
	Tick (√) o	ne box.			
	Gas				
	Liquid				
	Solid				(1)
(b)	What temp	perature does chlorine	gas condense at to for	rm a liquid?	(1)
(-)	Use Table			4	
	Temperati	ure =	°C		(1)
(c)	Complete	the sentences.			
	Going dow	n Group 7 the melting	points	·	
	forces		olecules increases so	the intermolecular	
		·			(2)
A tea	acher invest	igated the reaction of	iron with chlorine.		
The	diagram bel	low shows the apparat	rus used.		

Heat Glass tube
Why did the teacher do the investigation in a fume cupboard?
Tick (∨) one box.
Chlorine gas is coloured.
Chlorine gas is flammable.
Chlorine gas is toxic.
The word equation for the reaction is:
iron + chlorine → iron chloride
Iron chloride is a solid.
 The teacher weighed the glass tube and contents: before the reaction after the reaction.
What happened to the mass of the glass tube and contents during the reaction?
Give one reason for your answer.
The mass of the glass tube and contents
Reason

(2)

The teacher repeated the investigation with bromine gas and with iodine gas.

Table 2 shows the results.

Table 2

Element	Observation
Chlorine	Iron burns vigorously with an orange glow
Bromine	Iron burns with an orange glow
Iodine	Iron slowly turns darker

(f)	Fluorine is above chlorine in Group 7. Predict what you would observe when fluorine gas reacts with iron. Use Table 2.	
		(1)
(g)	Balance the equation for the reaction between iron and bromine.	
	2Fe + Br2 → 2 FeBr3	(1)
(h)	Calculate the relative formula mass (<i>M</i> r) of FeBr3 Relative atomic masses (<i>A</i> r): Fe = 56 Br = 80	
		(2) narks)

Q5.

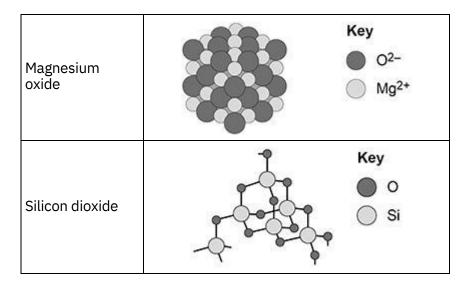
This question is about aluminium.

(a) Aluminium is a metal.

Draw one line from each property of aluminium to the correct reason for that property.

Property Reason

Aluminium has delocalised electrons


Conducts electricity

Aluminium has layers of atoms which can slide

	Aluminium has strong metallic bonds					
	High melt point	ing	Aluminiu	m has weak intermolecular forces		
			Aluminium	has a randon	n arrangemei	nt of atoms
(b)	Aluminium	can be use	ed to make alloys			
	What	is	meant	by	an	'alloy'?
lun	ninium is extr	acted fron	n bauxite.			
}aux	kite is a mixtu	ıre which c	contains aluminiu	ım oxide.		
(c) Bauxite contains between 15% and 25% aluminium.						
	Aluminium	oxide alwa	ays contains 53%	aluminium.		
	How does t	his show tl	hat bauxite is a m	nixture and n	ot a compoui	nd?
(d)	The waste n	naterial fro	om the bauxite is	stored in lak	es of mud.	
(d)			om the bauxite is		es of mud.	
(d)	The lakes o	of mud are		dams.	es of mud.	
(d)	The lakes of the image b	of mud are	held in place by	dams.	es of mud.	*

lur	minium is extracted by electrolysis.	
he	aluminium oxide is mixed with cryolite and melted.	
he	mixture is then electrolysed.	
e)	The formula of cryolite is Na3AlF6	
	Give the total number of atoms in the formula.	
	Number of atoms =	-
f)	What is the reason for adding cryolite to the aluminium oxide?	
	Tick (✓) one box.	
	To increase the amount of aluminium extracted	
	To lower the melting point of the mixture	
	To reduce the amount of aluminium oxide needed	
કુ)	Complete the sentences.	
	Choose answers from the box.	
	aluminium carbon fluorine	
	oxygen sodium	
	When the molten aluminium oxide and cryolite mixture is electrolysed the product at	
	the positive electrode is	
	This product reacts with the positive electrode because the positive electrode is made of	
	A sample of bauxite contains 25% aluminium.	

	000 kg of the samp	mum mass of aluminium that ble of bauxite.	can be extracted t	rrom 300
	Give your answer in	n standard form.		
		aximum mass (in standard for		
				(3) (Total 13 marks)
Q6.	guestion is about stu	ructure and bonding.		
		s have intermolecular forces b	netween particles?	
(3)	Tick (√) two boxes			
	, ,			
	Diamond			
	Magnesium			
	Poly(ethene)			
	Sodium chloride			
	Water			
				(2)
(b)	The table below she	ows the structures of three co	mpounds.	
	Compound	Structure		
			Key	
	Carbon dioxide		0	
			○ c	

Compare the structure and bonding of the three compounds:

- carbon dioxide
- magnesium oxide
- silicon dioxide.

(6)

(Total 8 marks)

Q7.

This question is about the halogens.

Table 1 shows the melting points and boiling points of some halogens.

Table 1

Element	Melting point in °C	Boiling point in °C
Fluorine	-220	-188
Chlorine	-101	-35
Bromine	-7	59

Bromine	-7	59	
(a) What is the state of bromine at 0 °C		and at 100 °C?	I
Tick (√) ₀	ne box.		
State	at 0 °C State at 1	100 °C	
C	Gas Gas	i	
G	Gas Liqu	id	
Lio	quid Gas		
Lio	quid Liqu	id	
S	olid Gas	5	
S	olid Liqu	id	
(b) Explain the	e trend in boiling points o	f the halogens shown in Ta	(1) able 1.

(4)

(c)	Why is it not correct to say that the boiling point of a single bromine molecule is 59 °C?		
		(
ron	reacts with each of the halogens in their gaseous form.		
he	diagram below shows the apparatus used.		
Hal	logen gas in Excess halogen gas out Heat Glass tube		
d)	Give one reason why this experiment should be done in a fume cupboard.		
e)	Explain why the reactivity of the halogens decreases going down the group.		
f)	A teacher investigated the reaction of iron with chlorine using the apparatus in the above diagram.		
	The word equation for the reaction is:		
	iron + chlorine → iron chloride		

The teacher weighed:

- the glass tube
- the glass tube and iron before the reaction

the glass tube and iron chloride after the reaction.

Table 2 shows the teacher's results.

Table 2

	Mass in g
Glass tube	51.56
Glass tube and iron	56.04
Glass tube and iron chloride	64.56

Calculate the simplest whole number ratio of:

Determine the balanced equat	ion for the reac	tion.	
Relative atomic masses (Ar):	Cl = 35.5	Fe = 56	
Moles of iron atoms : moles of			
Equation for the reaction			
			(6) (Total 16 marks)

moles of iron atoms: moles of chlorine atoms

Q8.

This question is about alloys.

Bronze and brass are both alloys which contain copper.

Bronze is an alloy of copper and one other metal. (a)

What is the other metal in bronze?

Tick (\lor) one box.

	Aluminium				
	Tin				
	Zinc				
	Give one use of b	orass.			
,	s of gold are usec	I to make iewe	llen		
	• pure gold • The 51241241 egable	is 24 carat is w12sthanwars inf contain only a	oy is measured in formation about gold and silver.		
			Mass of met	al in grams	
	Gold ring	Carat	Mass of met	al in grams silver	
	Gold ring	Carat			

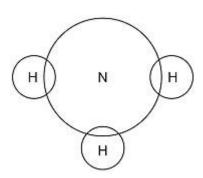
Steels are alloys of iron.

(e) Spoons are made of stainless steel.

		Spoons:	
		are washed after use	
		 must not wear away quickly. 	
		Suggest one reason why stainless steel is suitable for making spoo	ns.
	(f)	Steel horseshoes are shaped to fit the feet of horses.	(1)
		Which type of steel is most easily shaped into horseshoes?	
		Tick (∨) one box.	
		High carbon steel	
		Low carbon steel	
		Stainless steel	
			(1)
			(Total 8 marks)
Q9.		question is about materials used to make plates.	
	Plate	es are made from ceramics, paper or poly(propene).	
	(a)	Paper plates are biodegradable and recyclable.	
		Which stage of a life cycle assessment (LCA) would contain this information? Tick (\lor) one box.	
		Disposal at the end of useful life	
		Extracting and processing raw materials	
		Manufacturing and packaging	

	Use and operation during lifetime	
		(1)
(b)	Which two processes are used to make ceramic plates?	
	Tick (√) two boxes.	
	Forming a composite	
	Galvanising with zinc	
	Heating in a furnace	
	Melting sand and boron trioxide	
	Shaping wet clay	
		(2)
Poly	(propene) is produced from an alkene.	
(c)	Complete the sentences.	
	The name for very large molecules such as poly(propene) is	
	The name of the alkene used to produce poly(propene) is	
	·	(2)
(d)	The alkene needed to make poly(propene) is produced from crude oil.	(2)
` ,	Which two processes are used to produce this alkene from crude oil?	
	Tick (√) two boxes.	
	Chromatography	
	Cracking	
	Fermentation	

	Fractiona	distillation	3						
	Quarrying		3						(2)
(e)	What type	of bond joins the	e atoms	in a mo	lecule d	of poly(p	oropene)	?	(2)
	Tick (√) or	ne box.							
	Covalent								
	Ionic	8							
	Metallic								
									(1)
The	table below	shows informati	on abou	ut two p	olymer	s used t	o make p	olates.	
ŀ	Polymer	Effect of he		he					
	А	does no	ot melt						
	В	melts at	50 °C						
(f)	What type	of polymer is pol	ymer A?	?					
	Use the ta	ole above.							
()	Maria da a a	l				D l		-10	(1)
(g)		oolymer A behav				er B wne	en neated	J?	
	You sh	nould refer	to	cros	slinks	in	your	answer.	
									(1)
								(Total 10 m	


Q10.

This question is about ammonia, NH3

(a) Complete the dot and cross diagram for the ammonia molecule shown in Figure 1.

Show only the electrons in the outer shell of each atom.

(2)

(b)	Give one limitation of using a dot and cross diagram to represent an ammonia molecule.

(1)

(c)	Explain why	ammonia has a	low boiling point.
-----	-------------	---------------	--------------------

You	should	refer	to	structure	and	bonding	in	your	answer.

(3)

Ammonia reacts with oxygen in the presence of a metal oxide catalyst to produce nitrogen and water.

(d) Which metal oxide is most likely to be a catalyst for this reaction?

Tick (\lor) one box.

Figure 2 shows the displayed formula equation for the reaction.

Figure 2
$$4H-N-H + 3O=O \longrightarrow 2N \equiv N + 6H-O-H$$

$$\mid H$$

(1)

(3)

The table shows some bond energies.

Bond	N — H	0=0	$N \equiv N$	0 — н
Bond energy in kJ/mol	391	498	945	464

(e) Calculate the overall energy change for the reaction.

Use	Figure	2	and	the	table.
	Overall energ	gy change = ₋			kJ/mol

(f) Explain why the reaction between ammonia and oxygen is exothermic.

Use values from your calculation in part (e).

 (2)

(g) Figure 3 shows the reaction profile for the reaction between ammonia and oxygen.

Complete Figure 3 by labelling the:

- activation energy
- overall energy change.

Energy $4NH_3 + 3O_2$ $2N_2 + 6H_2O$ Progress of reaction

(2) (Total 14 marks)

Q11.

This question is about mixtures.

(a) Substances are separated from a mixture using different methods.

Draw one line from each substance and mixture to the best method of separation.

Substance and mixture

Method of separation

Chromatography

Ethanol from ethanol and water

Crystallisation

Salt from sea water Electrolysis The different colours in Filtration black ink Fractional distillation (3) (b) A student filters a mixture. Figure 1 shows the apparatus. Figure 1 Beaker. Filter paper cone Flask Suggest improvement to the apparatus. one (1) (c) Complete the sentences. Choose answers from the box. condense evaporate freeze melt solidify In simple distillation, the mixture is heated to make the liquid The vapour is then cooled to make it ______

Figure 2 shows the arrangement of atoms in a pure metal and in a mixture of metals.

Figure 2

(2)

Percentage of metal B atoms =		ure metal	Mixture of	metals	
Percentage of metal B atoms =	Metal A			388	
What is a mixture of metals called? Tick one box. An alloy A compound A molecule A polymer Thy is the mixture of metals in Figure 2 harder than the pure metal? Tick one box. The atoms in the mixture are different shapes. The layers in the mixture are distorted. The layers in the mixture slide more easily.	Calculate the point Figure 2.				wn
An alloy A compound A molecule A polymer Thy is the mixture of metals in Figure 2 harder than the pure metal? Tick one box. The atoms in the mixture are different shapes. The layers in the mixture are distorted. The layers in the mixture slide more easily.		Percentage of	metal B atoms :	=	 %
An alloy A compound A molecule A polymer Thy is the mixture of metals in Figure 2 harder than the pure metal? Tick one box. The atoms in the mixture are different shapes. The layers in the mixture are distorted.	What is a mixtu	re of metals calle	d?		
A compound A molecule A polymer Thy is the mixture of metals in Figure 2 harder than the pure metal? Tick one box. The atoms in the mixture are different shapes. The layers in the mixture are distorted. The layers in the mixture slide more easily.	Tick one box.				
A molecule A polymer Thy is the mixture of metals in Figure 2 harder than the pure metal? Tick one box. The atoms in the mixture are different shapes. The layers in the mixture are distorted. The layers in the mixture slide more easily.	An alloy				
A polymer Thy is the mixture of metals in Figure 2 harder than the pure metal? Tick one box. The atoms in the mixture are different shapes. The layers in the mixture are distorted. The layers in the mixture slide more easily.	A compound				
The atoms in the mixture are different shapes. The layers in the mixture are distorted. The layers in the mixture slide more easily.	A molecule				
The atoms in the mixture are different shapes. The layers in the mixture are distorted. The layers in the mixture slide more easily.	A polymer				
The atoms in the mixture are different shapes. The layers in the mixture are distorted. The layers in the mixture slide more easily.	Why is the mixtu	ure of metals in F	Figure 2 harder	than the pure metal?	
The layers in the mixture are distorted. The layers in the mixture slide more easily.	Tick one box.	-	5	,	
The layers in the mixture slide more easily.	The atoms in t	he mixture are dif	ferent shapes.		
	The layers in th	ne mixture are dis	storted.		
The mixture has a giant structure.	The layers in th	ne mixture slide m	nore easily.		
	The mixture ha	as a giant structur	e.		

(1)

(g)	A nanoparticle of pure metal A is a cube.
	Each side of the cube has a length of 20 nm.
	Figure 3 shows the cube.
	Figure 3
	20 nm
	What is the volume of the nanoparticle?
	Tick one box.
	20 nm3
	60 nm3
	400 nm3
	8000 nm3
	(1) (Total 11 marks)
Q12. This	question is about Group 7 elements.
Chlo	rine is more reactive than iodine.
(a)	Name the products formed when chlorine solution reacts with potassium iodide solution.
(b)	(1) Explain why chlorine is more reactive than iodine.

(3)

(3)

(c) Chlorine reacts with hydrogen to form hydrogen chloride.

Explain why	hydrogen cl	nloride is a gas at ro	om temperati	ure. Answer in
terms	of	structure	and	bonding.
·				

(d) Bromine reacts with methane in sunlight.

The diagram below shows the displayed formulae for the reaction of bromine with methane.

The table below shows the bond energies and the overall energy change in the reaction.

	С—Н	Br—Br	C—Br	H—Br	Overall energy change
Energy in kJ/mol	412	193	Х	366	-51

Calculate the bond energy X for the C—Br bond.

Use the diagram and the table above.

Q13.

		Bor	nd energy X = _		kJ/mol	
					(Total 11 m	(4) arks)
3. This	question is about a	lloys of copper.				
(a)	Complete the sent					
	Choose the answe	er from the box.				
	aluminium	iron m	agnosium	tin		
	Bronze is an alloy	of copper and		·		(1)
Bras	s is an alloy of copp	er and zinc.				
The t	able shows the pers.	centage by mass	of copper and	zinc in two typ	es of	
		Percentage (9	%) by mass]		
	Type of brass	Copper	Zinc			
	Red brass	90	10			
	Yellow brass	Х	30			
(b)	Calculate value X	n the table above				
		Percentage b	y mass X =		%	(1)
(c)	Calculate the mas	s of copper in 110	00 g of red bras	S.		(-)

				Mass =		g
(d)	What	is	meant	by	an	alloy?
(e)	Brass conta	ins layers of	atoms which	n can slide ov	er each oth	er. Explain
	why red bra	ass is softer	than yellow t	orass. Use the		e and your knowledge.
(f)			its are made			
			ts can be gol	•		
			of pure gold?	,		
	Tick (✓) one	e box.				
	9	18	22	24		
						(Total 8 ma
L4. This	question is al	oout different	: substances a	and their struc	tures.	
(a)	Draw one lin	ne from each	statement to	the diagram w	hich shows t	the

Structure

Statement

	4 4	
The substance is a gas		
The substance is a liquid		
The substance is ionic	00000	
	00000	
The substance is a solid metal	00000	
	9099999	
	800000	(4)
(b) Figure 1 shows the structure of an element.		
Figure 1		
What is the name of this element?		
Tick one box.		
Carbon		
Chloride		

	Nitrogen	
	Xenon	(1)
(c)	Why does this element conduct electricity?	(1)
	Tick one box.	
	It has delocalised electrons	
	It contains hexagonal rings	
	It has weak forces between the layers	
	It has ionic bonds	(1)
(d)	Figure 2 shows the structure of an alloy.	(±)
	Figure 2	
	Metal X	
	Explain why this alloy is harder than the pure metal Y.	
(e)	What percentage of the atoms in the alloys are atoms of X?	(2)

(2)

	(f)	What type of substance is an alloy?
		Tick one box.
		Compound
		Element
		Mixture
		(1) (Total 11 marks)
Q1	Figur	e 1 shows the outer electrons in an atom of the Group 1 element potassium n an atom of the Group 6 element sulfur.
		Figure 1
		K s
	(a)	Potassium forms an ionic compound with sulfur. Describe what happens
		when two atoms of potassium react with one atom of sulfur.
		Give your answer in terms of electron transfer.
		Give the formulae of the ions formed.

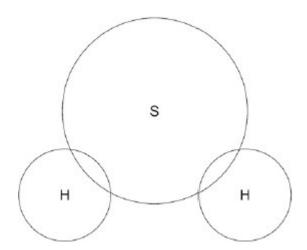
(5)

(b) The structure of potassium sulfide can be represented using the ball and stick model in Figure 2.

Figure 2

Key
Potassium ion
Sulfide ion

The ball and stick model is not a true representation of the structure of potassium sulfide.


Give one reason why.

(1)

(c) Sulfur can also form covalent bonds.

Complete the dot and cross diagram to show the covalent bonding in a molecule of hydrogen sulfide.

Show the outer shell electrons only.

(2)

(d) Calculate the relative formula mass (Mr) of aluminium sulfate Al2(SO4)3 Relative atomic masses (Ar): oxygen = 16; aluminium = 27; sulfur = 32

Relative formula r	mass =
Covalent compounds such as and do not conduct electricity	s hydrogen sulfide have low melting points y when molten.
Draw one line from each prop	perty to the explanation of the property.
Property	Explanation of property
	Electrons are free to move
	There are no
	charged particles free to move
Low melting point	
	Ions are free
	to move
	Weak intermolecular
	forces of attraction
Does not conduct electricity when molten	
	Bonds are weak
	Bonds are strong

(f) Ionic compounds such as potassium sulfide have high boiling points and conduct electricity when dissolved in water.

Draw one line from each property to the explanation of the property.

Explanation Property of property Electrons are free to move There are no charged particles free to move High boiling point Ions are free to move Weak intermolecular forces of attraction Conduct electricity when molten Bonds are weak Bonds are strong (2) (Total 14 marks)

Q16.

This question is about substances containing carbon atoms.

- (a) Diamond is made of carbon atoms.
 - (i) Diamond is used for tips of drills.

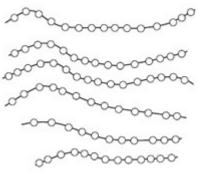
Figure 1 shows a drill.

(b)

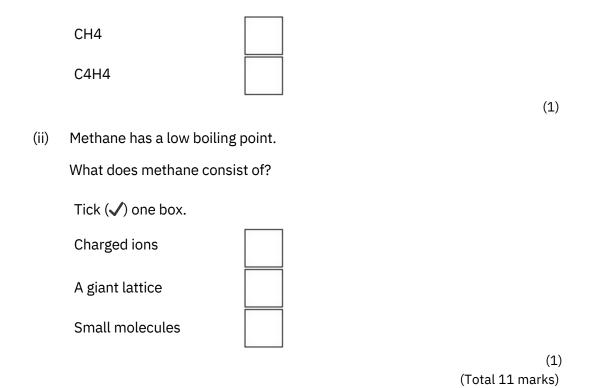
Figure 1

© Kershawj/iStock

		, , , , , , , , , , , , , , , , , , ,		
	Give one reason why d	iamond is used	for tips of drills.	
				(1)
(ii)	Diamond nanoparticles	can be made.		
()				
	Use the correct answer	from the box t	o complete the sentence.	
	hundred	million	thousand	
	Negaratislas santais	- f		
	Nanoparticles contain	a rew	atoms.	(4)
				(1)
Grap	hite is made of carbon a	toms.		
Figur	e 2 shows the structure	of graphite.		

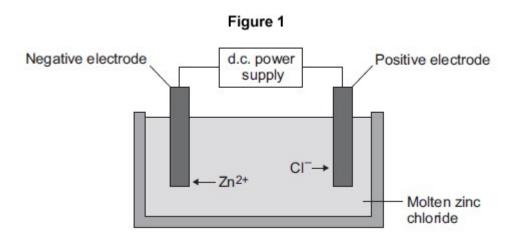

Figure 2

(i)	What type of bonding doe	es graphite have?
	Tick (√) one box.	
	Covalent	


(c)

	Ionic					
	Metallic					
			(1)			
(ii)	How many carbon atoms of graphite?	does each carbon atom bond to in				
	Tick (✓) one box.					
	1					
	2					
	3					
	4					
			(1)			
(iii) W	/hat is a property of graphit	re?				
	Tick (√) one box.					
	Dissolves in water					
	Has a low melting point					
	Soft and slippery					
			(1)			
Poly(ethene) is made of carbon and hydrogen atoms.						
Poly(ethene) is a thermosoftening polymer.						
Figure 3 shows the structure of a thermosoftening polymer.						
Figure 3						
محم						

(d)


(i)	Complete the contence						
(1)	Complete the sentence.						
	Between the polymer ch	ains in a thermos	softening polymer there				
	are no	···		(1)			
(ii)	Use the correct answer from the box to complete the sentence.						
	condense	dissolve	melt				
	Heating would cause a tl	hermosoftening _l	polymer to				
				(1)			
(iii) N	Many ethene molecules re	act together to m	nake poly(ethene).				
	erent types of poly(ethene)) can be made by	changing the				
	ditions for the reaction. gest two conditions that co	ould be changed.					
1.							
2.							
				(2)			
Figu	ire 4 shows how the atom	s are bonded in r	nethane.	(2)			
	i i	Figure 4					
		H					
	H	C ×					
		H					
(i)	What is the formula for n	nethane?					
	Tick (√) one box.						
	C4H						

Q17.

This question is about zinc.

Figure 1 shows the electrolysis of molten zinc chloride.

- (a) Zinc chloride is an ionic substance.
 - Complete the sentence.

When zinc chloride is molten, it will conduct _____

(1)

- (b) Zinc ions move towards the negative electrode where they gain electrons to produce zinc.
 - (i) Name the product formed at the positive electrode.

(c)

i)	Explain	why	zinc	ions	move	towards	the	negative	electrode
		- 							
٠	M								
) V				occurs	wnen 1	ine zinc ioi	ns gai	n electron	s?
	Tick (
	Neutral	isatio	ו						
	Oxidati	on							
	Reduct	ion							
nc	is mixed	with c	nner	to mal	ke an al	lov			
						e alloy and	l in nı	ıre zinc	
	1 16410 2	. 3110 00	5 the p				, pc	are zine.	
				Fi	gure 2				
	A	lloy	V 10				Pure	zinc	
X							X		
1	200	X	30	62			X		
	Use Fig	jure 2	to e	xplain	why t	he alloy	is ha	rder than	pure zinc

(ii)	Alloys can be bent. Some alloys return to their original shape when heated.					
	What name is used for these alloys?					
						
		(1)				
	(To	otal 8 marks)				

(2)