
Mark schemes

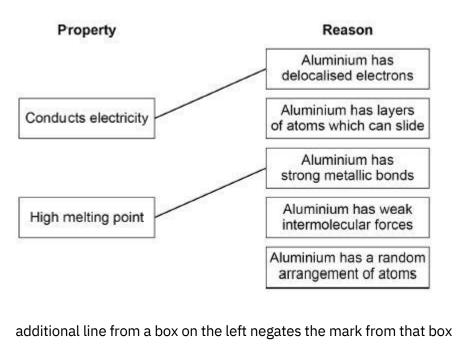
\cap	1	
Y		•

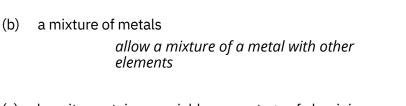
•		
(a)	any two from: • (potassium) floats • (potassium) melts • (potassium) moves around • potassium becomes smaller <i>allow potassium disappears</i> • (lilac) flame • effervescence <i>allow fizzing</i>	2
(b)	2K + 2H2O → 2KOH + H2 allow multiples allow 1 mark for KOH and H2	
		2
(c)	reactivity increases (going down the group)	1
	(because) the outer electron / shell is further from the nucleus allow (because) there are more shells allow (because) the atoms get larger	1
	(so) there is less attraction between the nucleus and the outer electron / shell allow (so) there is more shielding from the nucleus	
	do not accept incorrect attractions	1
	(so) the atom loses an electron more easily	1
(d)	(dot and cross diagram to show) sodium atom and oxygen atom <i>allow use of outer shells only</i>	1
	two sodium atoms to one oxygen atom allow two sodium ions to one oxide ion	1
	(to produce) sodium ion with a + charge	1
	(to produce) oxide ion with a 2– charge	1

(so) the layers (of atoms in an alloy) are distorted

(so in an alloy) the layers slide over each other less easily (than in a pure metal)

1


AQA Chemistry GCSE - Bonding and Structure


(c)	allow measure the temperature before	
	and after the reaction	1
	when each metal is added to silver nitrate solution	1
	same concentration / volume of solution or	
	same mass / moles of metal	
	allow same initial temperature (of silver nitrate solution)	4
		1
	the greater the temperature change the more reactive	1
		[8]
Q3.		
(a)	limestone	1
	sodium carbonate	I
	socium carbonate	1
(b)	(advantage) stronger	1
	(reason) less easily damaged	I
	(reason) less easily damaged	1
(c)	(advantage) lower density	1
	(reason) lighter (to install)	I
		1
(d)		
	нн	1
(e)	(add damp) litmus paper	
		1
	(litmus paper) is bleached or	
	(litmus paper) turns white	
	ignore (litmus paper) turns red	1

		last a long			
			ignore references to cost allow break down slowly		
				1	
		(wood) renewable			
			allow trees can be replanted allow aesthetic reasons		
				1	
(g	g)	5.94	e of aluminium =)		
		6.00 × 100		1	
		= 99 (%)			
(1			rder (then nure eluminium)	1	
(1	า)	(alloy is) ha	rder (than pure aluminium) allow (alloy is) stronger (than pure aluminium)		
			ignore references to cost	1	
					[14]
Q4.					
•	a)	gas		1	
(ł	c)	-35 (°C)			
·			allow any value between -35 °C and -100 °C		
(,		inoroooo		1	
((c)	increase		1	
		increase	allow become stronger		
			allow become stronger	1	
(0	d)	chlorine gas	s is toxic	1	
(e	e)	increased			
		abla viva a (at		1	
		or	toms) are now part of the solid (iron chloride)		
		the mass o	f the chlorine (atoms) is now also measured	1	

(f) burns very vigorously allow burns violently allow brighter (orange) glow allow (orange) flame allow explodes 1 (g) 2 Fe + 3 Br2 → 2 FeBr3 allow multiples 1 (h) $56 + (3 \times 80)$ 1 = 296 *ignore units* 1 [11]

(c) bauxite contains a variable percentage of aluminium allow converse argument allow bauxite does not have a fixed proportion / percentage of aluminium

1

1

1

(d)	 any two from: danger of dam bursting allow the lake (of mud) could overflow leakage of toxic substances from mud to environment water pollution damage to habitats visual pollution (dam) blocks light reduces the value of houses allow unpleasant smell 	2	
(e)	10 / ten	-	
(f)	to lower the melting point of the mixture	1	
(g)	oxygen must be in this order	1	
	carbon	1	
(h)	25 100 × 300 000	1	
	=75 000	1	
	= 7.5 ×104 (kg) allow correct conversion to standard form of an incorrectly calculated mass	1	[13]
Q6. (a)	poly(ethene)	1	
	water	1	
(b)	Level 2: Scientifically relevant features are identified; the way(s) in which they are similar/different is made clear and (where appropriate) the magnitude of the similarity/difference is noted.	4-6	
	Level 1: Relevant features are identified and differences noted. 1–3	1-3	
	No relevant content		

Indicative content

- (both) carbon dioxide and silicon dioxide are made up of atoms
- (but) magnesium oxide is made up of ions
- (both) silicon dioxide and magnesium oxide are giant structures
- (but) carbon dioxide is small molecules
- with weak intermolecular forces
- all three compounds have strong bonds
- (both) carbon dioxide and silicon dioxide are formed from two
- non-metals
- (so) bonds formed are covalent
- (so) electron (pairs) are shared (between atoms)
- (but) magnesium oxide is formed from a metal and a non-metal
- (so) bonds in magnesium oxide are ionic
- (so) electrons are transferred
- from magnesium to oxygen
- two electrons are transferred
- bonds in silicon dioxide are single bonds
- (where) each silicon forms four bonds
- (and) each oxygen forms two bonds
- (but) in carbon dioxide the bonds are double bonds
 (where) carbon forms two double bonds
 (and) oxygen forms one double bond

ignore properties e.g. melting point, electrical conductivity

Q7.

(a)	liquid gas	1
(b)	(boiling point) increases (down the table / group)	1
	(because) the relative formula / molecular mass increases or (because) the size of the molecule increases	1
	(so) the intermolecular forces increase (in strength) allow (so) the forces between molecules increase (in strength)	1
	(so) more energy is needed to overcome the intermolecular forces allow (so) more energy is needed to separate the molecules do not accept a reference to breaking bonds unless specifically between	

	molecules	1
(c)	boiling point is a bulk property allow boiling point is related to intermolecular forces (so more than one molecule is involved)	1
(d)	the gas / halogen is toxic allow the gas / halogen is poisonous / harmful allow to prevent inhalation of the gas / halogen ignore deadly / lethal	1
(e)	(going down the group) the outer electrons / shell become further from the nucleus allow energy level for shell throughout allow the atoms become larger allow the number of shells increases ignore the number of outer shells increases	1
	(so) the nucleus has less attraction for the outer electrons / shell allow (so) the nucleus has less attraction for the incoming electron allow (so) increased shielding between the nucleus and the outer electrons / shell allow (so) increased shielding between the nucleus and the incoming electron	1
	(so) an electron is gained less easily	1
(f)	4.48 (g iron) and 8.52 (g chlorine) (moles Fe = $\frac{4.48}{56}$ =) 0.08 allow correct calculation using incorrectly calculated mass of iron	1
	(moles Cl = $\frac{8.52}{35.5}$ =) 0.24 allow correct calculation using incorrectly calculated mass of chlorine allow (moles Cl2 = $\frac{8.52}{71}$ =) 0.12	1

(Fe:Cl = 0.08:0.24 =) 1:3

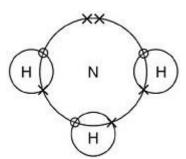
allow correct calculation using incorrectly calculated moles of iron and / or chlorine

 $2 \text{ Fe} + 3 \text{ Cl}2 \rightarrow 2 \text{ FeCl}3$

allow multiples / fractions allow a correctly balanced equation including Fe and Cl2 from an incorrect ratio of Fe : Cl allow 1 mark for Fe and Cl2 (reactants) and FeCl3 (product) or allow 1 mark for Fe and Cl2 (reactants) and a formula for iron chloride correctly derived from an incorrect ratio of Fe : Cl

(product)

2 [16]


Q8.

(a)	tin	1
(b)	 any one from: ornaments musical instruments hinges / knobs / screws allow any correct use of brass 	1
(c)	(A) 12 (carat)	1
	(B) 3 (grams)	1
(d)	 any two from: (alloy of gold is) harder (alloy of gold is) cheaper aesthetic reasons allow converse statements about pure gold 	2
(e)	any one from: • does not corrode <i>allow will not rust</i> • does not react with water is hard	

		1	
(f)	low carbon steel	1	
			[8]
Q9.			
(a)	disposal at the end of useful life	1	
(b)	heating in a furnace	1	
	shaping wet clay	1	
(c)	polymers	1	
	propene	·	
	allow (a) monomer	1	
(d)	cracking	1	
	fractional distillation	1	
(e)	covalent		
(f)	thermonetting	1	
(f)	thermosetting	1	
(g)	polymer A has crosslinks (between polymer molecules)		
	or polymer B has no crosslinks (between polymer molecules)	4	
		1	[10]

Q10.

(a)

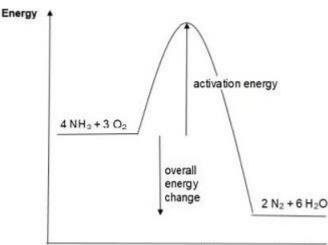
scores 2 marks allow dots, crosses, circles or e(-) for electrons

	1 bonding pair of electrons in each overlap	1
	2 non-bonding electrons on nitrogen do not accept non-bonding electrons on hydrogen ignore inner shell electrons drawn on nitrogen	1
(b)	does not show the shape or	
	only two-dimensional allow is not three-dimensional	1
(c)	(ammonia has) small molecules allow (ammonia has) a simple molecular (structure)	1
	(ammonia has) weak intermolecular forces allow (ammonia has) weak intermolecular bonds do not accept weak covalent bonds	1
	(so) little energy is needed to overcome the intermolecular forces allow (so) little energy is needed to break the intermolecular bonds allow (so) little energy is needed to separate the molecules do not accept references to breaking covalent bonds	1
(d)	Cr2O3	
(e)	an answer of (-)1272 (kJ) scores 3 marks	1
	(for bonds broken) ((12 x 391) + (3 x 498) =) 6186	4
	(for bonds made) ((2 x 945) + (12 x 464) =) 7458	1
	(overall energy change = 6186-7458 =) (-)1272 (kJ) allow correct calculation using incorrectly calculated values from step 1 and/or step 2	
		1

(f)

allow ecf from part (e)

7458 (kJ) (released in making bonds) is greater than 6186 (kJ) (used in breaking bonds) or

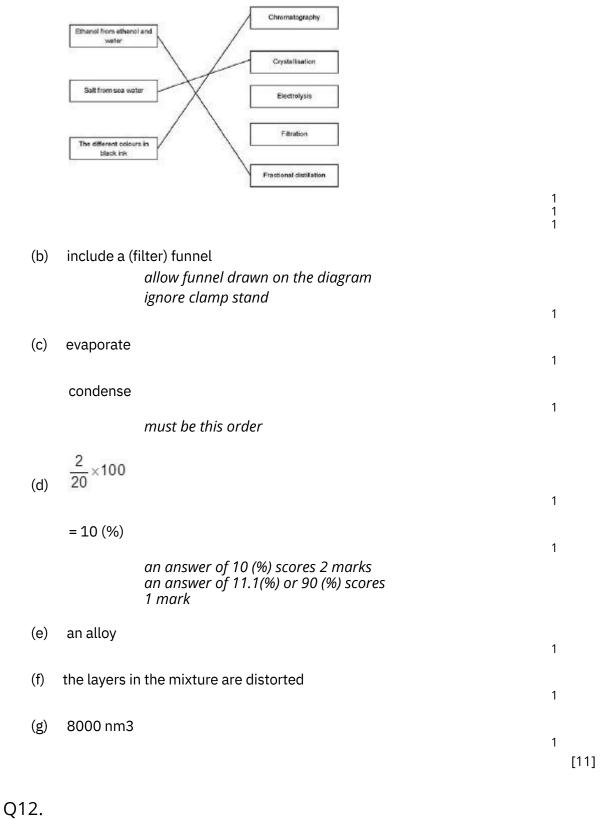

the products have 1272 (kJ) less energy than the reactants

allow the (overall) energy change is -1272 (kJ)

(so) energy is released (to the surroundings)

dependent on MP1 being awarded allow (so) heat is released (to the surroundings) if no values given, allow 1 mark for more energy released in making bonds than used in breaking bonds

Progress of reaction


1

1

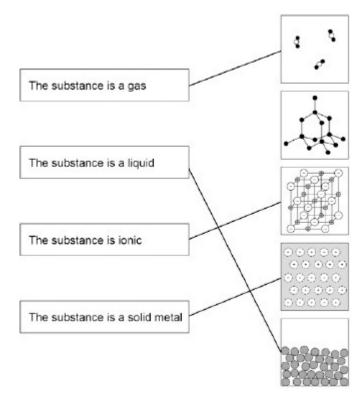
scores 2 marks allow discontinuous lines ignore arrow heads

activation energy labelled 1
(overall) energy change labelled 1
[14]

(a)	potassium chloride and iodine
	either order
	allow KCl for potassium chloride and I2 for iodine

Page 14 of 20

(b)	(chlorine's) outer electrons / shell closer to the nucleus <i>allow chlorine has fewer shells</i>	
	allow chlorine atom is smaller than	
	iodine atom	
	ignore chlorine has fewer outer shells	1
	(so) the chlorine nucleus has greater attraction for outer electrons / shell	
	allow chlorine has less shielding	
	do not accept incorrect types of attraction	
		1
	(so) chlorine gains an electron more easily	
	may 2 marks can be awarded if the	1
	max 2 marks can be awarded if the answer refers to chloride / iodide	
	instead of chlorine / iodine	
	allow converse statements	
	allow energy levels for shells throughout	
(c)	hydrogen chloride is made of small molecules	
	allow hydrogen chloride is simple molecular	
	morecular	1
	(so hydrogen chloride) has weak intermolecular forces*	
		1
	(intermolecular forces) require little energy to overcome*	1
	*do not accept reference to bonds	I
	breaking unless applied to	
	intermolecular bonds	
(d)	(bonds broken = 4(412) + 193 =)1841	
		1
	(bonds formed = 3(412) + 366 + X =) 1602 + X	1
		1
	-51 = 1841 - (1602 + X)	
	allow use of incorrectly calculated values of bonds broken and / or bonds	
	formed from steps 1 and 2 for steps 3	
	and 4	1
	(X =) 290 (kJ/mol)	
	allow a correctly calculated answer from use of −51 = bonds formed − bonds	
	broken	4
		1

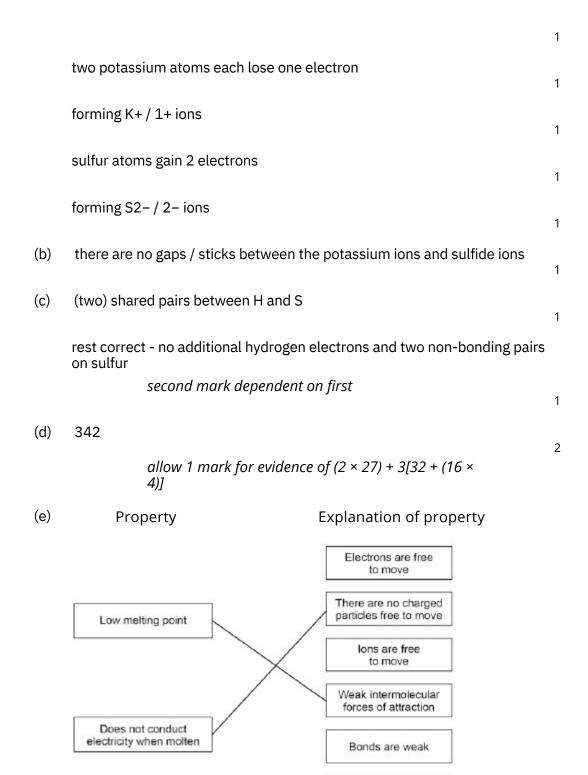

OR

alternative method ignoring the 3 unchanged C–H bonds

(412 + 193 =) 605 (1) 366 + X (1) -51 = 605 - (366 + X) (1) (X =) 290 (kJ/mol) (1) an answer of 290 (kJ/mol) scores 4 marks an answer of 188 (kJ/mol) scores 3 marks an incorrect answer for one step does not prevent allocation of marks for subsequent steps

[11]

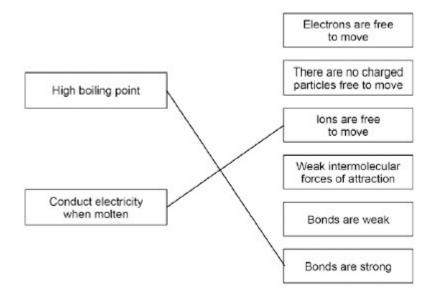
Q13.			
(a)	tin	1	
(b)	70 (%)	1	
(c)	90 100×1100	1	
	= 990 (g)	1	
(d)	mixture of metals	1	
(e)	(red brass) contains more copper allow converse	1	
	(so) layers slide more easily		
	or layers are less distorted	1	
(f)	24	1	
			[8]
Q14.			

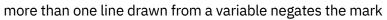

more than one line drawn from a variable negates the mark

		4	
(b)	Carbon	1	
(c)	It has delocalised electrons	1	
(d)	the atoms / particles / ions are different sizes do not accept molecules	1	
	so there are no rows / layers to slide accept the layers are disrupted	1	
(e)	$\frac{2}{27} \times 100$	1	
	7.4% allow 7.4% with no working shown for 2 marks	1	
(f)	Mixture	1	[11]

.

Q15.


(a) electrons transferred from potassium to sulfur



Bonds are strong

more than one line drawn from a variable negates the mark

(f) Property Explanation of property

2 [14]

Q16. (a)	(i)	hard ignore strong	
			1
	(ii)	hundred	1
(b)	(i)	Covalent	1
	(ii)	3	1
	(iii)	Soft and slippery	·
	(III)		1
(c)	(i)	cross-links allow bonds ignore links do not accont intermolocular	
		do not accept intermolecular	1
	(ii)	melt	1
	(iii)	any two from: • temperature <i>allow heat(ing)</i>	
		pressure catalyst	2

AQA Chemistry GCSE - Bonding and Structure

	(d)	(i)	CH4	1	
		(ii)	Small molecules	1	[11]
Q1	7. (a)	elect	tricity allow an electric current	1	
	(b)	(i)	chlorine/Cl2 do not accept chloride	1	
		(ii)	(zinc ions are) positive ignore to gain electrons	1	
			and (opposite charges) attract	1	
		(iii)	reduction	1	
	(c)	(i)	in alloy: accept converse different sized atoms/particles or		
			no layers/rows accept layers distorted	1	
			so cannot slide	1	
		(ii)	shape memory (alloys) accept smart	1	[8]
					[O]