Mark schemes

Q1.

(a) spherical

allow ball-shaped ignore round / circular

1

1

1

1

- (b) any one from:
 - drug delivery (round the body)
 - hydrogen storage
 - anti-oxidants
 - reduction of bacterial growth
 - catalysts
 - (cylindrical fullerenes for) strengthening materials
 - (spherical fullerenes for) lubricants

(c)

(d) C3H6O

allow CH3COCH3 allow elements in any order

(e)	the intermolecular forces are weak	1
(f)	Level 3: Relevant points (reasons/causes) are identified, given in detail and logically linked to form a clear account.	5-6
	Level 2: Relevant points (reasons/causes) are identified, and there are attempts at logical linking. The resulting account is not fully clear.	3-4
	Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.	1-2
	No relevant content	0
	Indicative content	

- bonds are covalent
- giant / macromolecular structure
- three (covalent) bonds per carbon atom or
 - only three electrons per carbon atom used in (covalent) bonds
 - so one electron per carbon atom (is delocalised)
- these delocalised electrons
- can move through the structure
- carrying (electrical) charge
- so graphite conducts electricity
- layered structure
- of (interlocking) hexagonal rings
- with weak (intermolecular) forces between layers or
 - no (covalent) bonds between layers
 - so the layers can slide over each other
- so graphite is soft and slippery

[11]

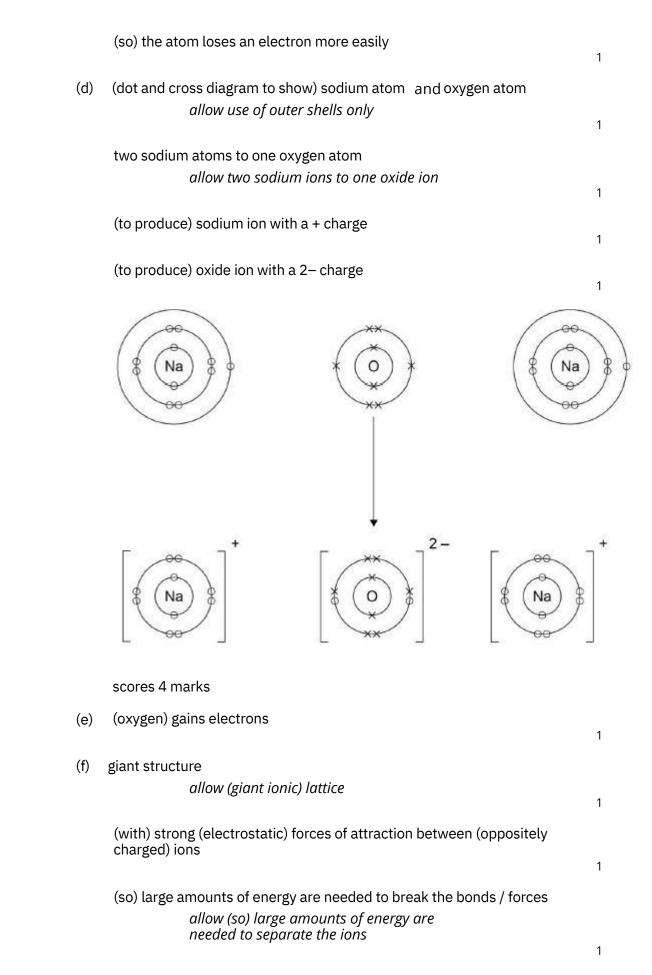
Q2.

- (a) any two from:
 - (potassium) floats
 - (potassium) melts
 - (potassium) moves around
 - potassium becomes smaller

allow potassium disappears

- (lilac) flame
- effervescence
 allow fizzing
- (b) 2K + 2H2O → 2KOH + H2 allow multiples allow 1 mark for KOH and H2
- (c) reactivity increases (going down the group)

(because) the outer electron / shell is further from the nucleus allow (because) there are more shells allow (because) the atoms get larger


(so) there is less attraction between the nucleus and the outer electron / shell

allow (so) there is more shielding from the nucleus do not accept incorrect attractions 2

2

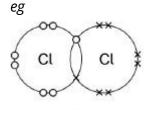
1

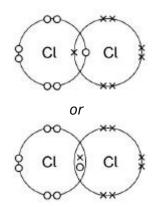
1

[16]

Q3. (a)	C6H8O7		
		1	
(b)	covalent	1	
(c)	shows (single and) double bonds	1	
	shows which atoms are which element	1	
(d)	temperature decreases (during the reaction) allow (the solution) gets colder	1	
(e)	all six points plotted correctly allow a tolerance of ± ½ small square allow 1 mark for four / five points plotted correctly		
	line of best fit	2	
	extrapolation to meet the printed line	1	
(f)	22.6 – 20.2 allow ecf from question (e)	1	
	= 2.4 (°C) ignore sign if no other mark awarded allow 1 mark for 2.2 (°C)	1	
(g)	temperature of solution	1	[12]
Q4. (a)	poly(ethene) water	1	
(b)		1	

		the magnitude of the similarity/difference is noted.		
		Level 1: Relevant features are identified and differences noted. 1–3		
		No relevant content		
		Indicative content		
		 (both) carbon dioxide and silicon dioxide are made up of atoms (but) magnesium oxide is made up of ions 		
		• (both) silicon dioxide and magnesium oxide are giant structures		
		 (but) carbon dioxide is small molecules with weak intermolecular forces 		
		all three compounds have strong bonds		
		• (both) carbon dioxide and silicon dioxide are formed from two non-metals		
		(so) bonds formed are covalent (so) electron (pairs) are shared (between atoms)		
		(but) magnesium oxide is formed from a metal and a non-metal		
		 (so) bonds in magnesium oxide are ionic (so) electrons are transferred 		
		 from magnesium to oxygen two electrons are transferred 		
		 bonds in silicon dioxide are single bonds 		
		(where) each silicon forms four bonds		
		 (and) each oxygen forms two bonds (but) in carbon dioxide the bonds are double bonds 		
		(where) carbon forms two double bonds (and) oxygen forms one double bond		
		(and) oxygen forms one double bond		
		ignore properties e.g. melting point, electrical conductivity		
Q		11202		
	(a)	H2O2	1	
	(b)	covalent	1	
	(c)	transition metals		
	. /		1	
	(d)	В	1	
		٨	1	
	(e)	A	1	


[8]


(f)	exothermic	1
(g)	**	
	H XO OXH	
	scores 2 marks	
	allow dots, crosses, circles or e(-) for electrons	
	1 bonding pair of electrons in the right hand overlap	
	do not accept any change to the number of electrons in the left hand overlap	
		1
	4 non-bonding electrons on oxygen	
	do not accept non-bonding electrons on	
	hydrogen ignore inner shell electrons drawn on oxygen	
	ovygen	1
		[8]
Q6.		
(a)	A	1

(b) D 1 (c) C

1

- (d) E
- (e) bonding pair of electrons drawn electrons can be dots, crosses or e (-) in any combination

do not accept if electrons added to outer shells outside overlap

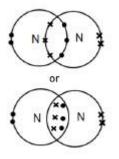
		1
(f)	weak forces between molecules	1
(g)	MnO	1
(h)	ions move around in the liquid	1

[8]

Q7.

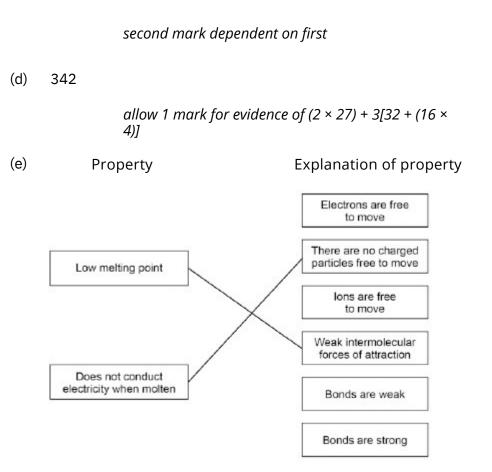
(a)	lithium (atom) loses (one) electron(s)	1
	chlorine (atom) gains (one) electron(s)	1
	reference to transfer of one electron	1
	to form positive and negative ions	
	allow to form noble gas electronic structures or allow to form stable electron arrangements or allow to form full outer shells or	
	allow reference to ionic bonding	1
(b)	<u>161</u> 81+98×100	1
	= 89.944134	1
	= 89.9 (%)	

		1
	an answer of 89.9 (%) scores 3 marks	
(c)	more sustainable or less waste allow any sensible economic or environmental reason but not 'cheaper' without qualification	1
(d)	50 / 1000 (dm3) or 0.05 dm3 or	
	80 / 1000 (g / cm3) or 0.08 g / cm3	1
	= 4(.00) (g)	1
	an answer of 4(.00) (g) scores 2 marks	
		[10]
Q8.		

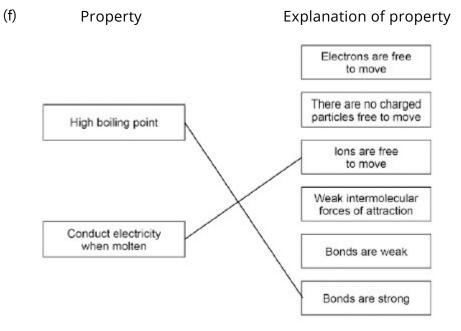

1

1

(a)	six electrons in the overlap
	allow dots, crosses or e(-) for electrons


2 non-bonding electrons on each nitrogen atom

2 marks for an answer of:



(b)	weak forces	1
	between molecules or intermolecular do not allow references to covalent bonding between molecules	1
	(which) need little energy to overcome	1
(c)	each (carbon) atom forms three covalent bonds	1
	forming layers (of hexagonal rings)	1

	(soft) (because) layers can slide over each other	1	
	(conducts electricity) (because of) delocalised electrons	1	
(d)	molecules are spherical	1	
	(so molecules) will roll	1	
(e)	surface area (= 20 × 20 × 6) = 2400 (nm2)	1	
	volume (= 203) = 8000 (nm3)	1	
	ratio = 0.3 (nm3): 1 (nm 3) ratio = 0.3 (nm3): 1 (nm3)		
	or 1 (nm3): 3.33 (nm3)	1	
(f)	(nanoparticles) have a larger surface area to volume ratio	1	
	so less can be used for the same effect	1	[16]
00			
Q9. (a)	electrons transferred from potassium to sulfur	1	
	two potassium atoms each lose one electron	1	
	forming K+ / 1+ ions	1	
	sulfur atoms gain 2 electrons	1	
	forming S2– / 2– ions	1	
(b)	there are no gaps / sticks between the potassium ions and sulfide ions	1	
(c)	(two) shared pairs between H and S	1	
	rest correct - no additional hydrogen electrons and two non-bonding pairs on sulfur		

more than one line drawn from a variable negates the mark

more than one line drawn from a variable negates the mark

[14]

2

2

1

2

Q10.			
(a)	(i)	7 / seven	1
	(ii)	1	
		do not accept –1	1
		Electron	1
	(iii)	isotopes	
			1
(b)	(i)	(sodium +) fluorine → sodium fluoride	1
	(ii)	compounds	
	<i>/</i> ····		1
	(iii) m	mole	1
	(iv)	sodium (atom) loses	
		fluorine (atom) gains	1
		one electron	1
		ions formed	1
		allow sodium forms positive (ion) or fluorine forms	1
		negative (ion) allow form ionic bond	
		allow to gain a full outer shell of electrons allow forms noble gas structure	
		max 3 if reference to incorrect particle / bonding	
	(v)	Dissolve in water	
		High melting point	1
			1 [13]