Mark schemes

\cap	1		
Y	1	٠	

•	(a)	ammonium phosphate	1	
		potassium nitrate	1	
	(b)	(nitric acid) calcium nitrate	1	
		(phosphoric acid) (calcium) triple superphosphate or calcium dihydrogenphosphate	1	
	(c)	(industrial process) (is) large(er) scale allow converse for laboratory process ignore references to cost / energy ignore large mass produced	1	
		(is) quicker	1	
		(is a) continuous process allow does not need to be repeated	1	
		reasoned judgement	1	[8]
Q2	(a)	(the reaction is) reversible allow description of a reversible reaction	1	
	(b)	iron	1	
	(c)	activation energy with a catalyst	1	
	(d)	bar to 22 (%) labelled phosphorus / P allow a tolerance of ± ½ a small square	1	
		bar to 25 (%) labelled potassium / K		

if no other mark is awarded, allow 1 mark for two bars drawn to 22% and 25%

(e) there are other elements in the fertiliser (besides phosphorus and potassium) or

there is nitrogen in the fertiliser

allow there are other substances in the
fertiliser (besides phosphorus and
potassium)

(f) B 1 (g) B

1

1

1

1

[8]

Q3.

•	
(a)	(equation contains a) \rightleftharpoons (symbol)
	allow description of arrow / symbol

(b) exothermic
(c) to reduce costs
to use less energy
(d) (the world production of ammonia) increased

(the increase was) not steady / linear do not accept decreases ignore levels off

- (e) the demand for food changed
 the world population changed
 (f) C and D
 1
- (g) D

[10]

Q4.		
(a)	an answer of 17.6470588 (%) correctly rounded to at least 2 significant figures scores 2 marks	
	⁶ / ₃₄ × 100	1
	= 17.6 (%) allow 17.6470588 (%) correctly rounded to at least 2 significant figures	1
(b)		
	allow converse arguments in terms of higher pressure ignore references to rate	
	higher yield (of hydrogen or carbon monoxide or product) allow more hydrogen or more carbon monoxide or more product allow equilibrium moves to the right allow equilibrium moves in the forward	
	direction	1
	(because) fewer moles / molecules / particles on left hand side or	
	(because) more moles / molecules / particles on right hand side allow (because) the reverse reaction produces fewer moles / molecules / particles	
	or allow (because) the forward reaction produces more moles / molecules / particles	
	do not accept fewer / more atoms	1
(c)	no effect (on yield of hydrogen) allow position of equilibrium unaffected by pressure	
	ignore references to rate of reaction	1
(d)	an answer of 2.25 scores 3 marks	
	350 (°C) and 285 (atmospheres) = 63 (%)	
	and 450 (°C) and 200 (atmospheres) = 28 (%)	

allow a value between 62 (%) and 64 (%) inclusive

1

	63 28			
		allow a correct expression using incorrectly determined value(s) for percentage yield		
			1	
	= 2.25 (time	es greater) allow a correct calculation using incorrectly determined value(s) for percentage yield correctly evaluated and rounded to at least 2 significant figures	1	
(e)				
(0)	r.	allow converse arguments in terms of low(er) pressure		
	• the er	ım: nergy costs would be high(er)		
	• the ec	<i>ignore energy / cost unqualified</i> quipment would need to be strong(er)		
	• eisper	the equipment would be (more) ዩኒኒምሮፍኦያርቶይቀጥጠጥዊስ dangerous allow (more) dangerous because		
		(greater) risk of explosion	1	
(f) amm	higher temp onia)	peratures produce a lower (percentage) yield (of		
		allow converse allow correct reference to shift in equilibrium		
		ignore references to pressure		
			1	
(g)	world popul	ation has increased	1	
	any one fro	m:		
	• dema	Ind for fertiliser has increased		
	• increa	ased demand for other specified onia-based products e.g. nitric acid,		
	arugs	, uyes, explosives	1	
				[12]

Q5.

(a) hydrogen

	allow H2	1
(b)	450 °C allow values in the range 400–500 °C	1
	200 atm / atmospheres allow values in the range 150–250 atm / atmospheres allow 1 mark if both values within range but no units given	
(c)	ammonia has a higher boiling point allow the other gases have lower boiling points ignore references to melting point	1
(d)	Level 3: Relevant points (reasons / causes) are identified, given in detail and logically linked to form a clear account.	1 5-6
	Level 2: Relevant points (reasons / causes) are identified, and there are attempts at logical linking. The resulting account is not fully clear.	3-4
	Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.	1-2
	No relevant content	0
	Indicative content	
	changes	
	carbon dioxide has decreasedoxygen has increased	
	processes	
	 volcanic activity released water vapour the water vapour condensed to form oceans carbon dioxide dissolved in oceans carbonates produce sediments carbon locked up in sedimentary rocks 	
	 algae and plants evolved / appeared algae / plants absorbed carbon dioxide by photosynthesis which also released oxygen carbon locked up in fossil fuels 	

(e)	any one from: • occurred 4.6 billion years ago allow any indication of billions of years allow limited or no proof	
	limited or no evidence ignore there was nobody there	1 [11]
Q6. (a)	4	1
(b)	reversible (reaction)	1
(c)	Air Air Alcohol Ammonia Nitrogen Iron Natural gas	1
(d)	-40°C	1
(e)	recycled to the reactor	1
(f)	ionic	1
(g)	nitrogen	1
	phosphorus	1
(h)	0.24 × 50 × 5 allow £87.50	1
	= £60	1
	an answer of £60 scores 2 marks	
(i)	may need to use nitrogen, phosphorus and potassium allow neither fertiliser has all the elements / nutrients needed.	
		[12]

Q7.	a)	cool		
		to –34°C allow temperatures below –34°C but above –196 °C	1	
(b)	recycled (to the reactor)	1	
(c)	$825 \times \frac{2}{3}$	1	
		= 550 (dm3) an answer of 550 (dm3) scores 2 marks	1	
(d)	a lower pressure would decrease the equilibrium yield	1	
		a lower temperature would make the reaction too slow	1	
(e)	nitrogen / N	1	
(†	f)	B and C	1	
		contain nitrogen, phosphorus and potassium	1	
(;	g)	 (B) any two from: more stages uses more energy uses more raw materials takes longer allow converse for C 	2	[12]
Q8. (;	a)	N2 + 3 H2 \rightarrow 2 NH3	1	
(b)	catalyst	1	
(0	c)	as pressure increases percentage yield increases	1	

	(d)	32–23		
		both readings correct	1	
		= 9 (%)	1	
			I	[5]
09				
ζJ	(a)	ammonia and nitric acid		
		allow NH4OH allow NH3(aq)		
			1	
	(b)	shows fertilisers are formulations allow gives percentage / proportion of nitrogen,		
		phosphorus and potassium in the fertiliser	1	
		(so) farmers can choose fertiliser with required properties	4	
	(c)	as world population increases, ammonia production increases	1	
	(C)	as world population increases, annionia production increases	1	
		ammonia is used to produce fertilisers	1	
		so increasing need for fertilisers as more food required for increased		
		allow as more food produced less mortality		
			1	[6]
01	0			
Q1	0. (a)	endothermic		
	(1-)		1	
	(D)	82 (%) correct answer with working gains 3 marks		

correct answer with working gains 3 marks if 17 or 34 not shown in working max 2 marks accept 82.4 accept 82.35 to full calculator display (82.35294...) correctly rounded to at least 2 sf if no answer or incorrect answer, then (Mr =) 17 gains 1 mark or 14/17 gains 2 marks OR (2Mr =) 34 gains 1 mark or 28/34 gains 2 marks

OR 14/their Mr shown gains 1 mark or correct calculation of 14/their Mr gains 2 marks

3

1

1

1

(c)	(i)	7 / seven
	(ii)	H+ + OH− → H2O
	(iii)	ammonium chloride allow NHÇl
		ignore an incorrect formula
(d)	Marl	ks awarded for this answer will be determined by the Quality of Written

 (d) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also apply a 'best-fit' approach to the marking. Level 3 (5 – 6 marks):

Suggestion with reasons from all three graphs, and linking of ideas which may explain a compromise. Level 2 (3 – 4 marks):

Suggestion with reasons referring to more than one graph.

Level 1 (1 – 2 marks):

Suggestion with a reference to a graph.

0 marks:

No relevant content.

Examples of chemistry points made in response: A reasonable suggested amount of fertiliser would be in the region of 200 kg (per ha).

Accept any suggestion from about 180 kg (per ha) to 500 kg (per ha). Yield:

- Using fertiliser improves yield.
- Yield improved most up to about 200 kg (per ha) of fertiliser.
- Yield only increased slightly above about 200 kg (per ha).

Profit:

- About 200 kg of fertiliser gives the most profit.
- Above about 200 kg (per ha) of fertiliser profit declines.

Run off:

- Run off is at low levels until about 300 kg (per ha) of fertiliser.
- Above about 300 kg (per ha) of fertiliser, run off increases.

Examples of linking of ideas:

- Overall 200 kg gives high crop yield and most profit.
- In conclusion 200 kg gives high crop yield and low run off.
- 200 kg gives most profit and low run off.

	Exar • •	nples of compromise: Profits go down after about 200 kg (per ha) of fertiliser because cost of fertiliser is not covered by increased yield. 200 kg gives the highest profit although it is not the highest yield. 500 kg gives the best yield but has the most runoff	:	
		Soo kg gives the best yield but has the most fution.	6	[13]
Q11. (a)	(i)	nitrogen: air	1	
		hydrogen: natural gas	1	
	(ii)	as a catalyst	1	
		so the reaction speeds up allow lowers activation energy or so a lower temperature can be used	1	
	(iii)	cooled	1	
		ammonia condenses / liquefies allow nitrogen and hydrogen remain in the gaseous state	1	
	(iv)	recycled allow reused or returned to the reactor	1	
(b)	reve	rsible arrows	1	
	hydr	ogen and ammonia	1	[9]
Q12.	(i)	natural das		
(u)		allow fossil fuels / biogas generator	1	
	(ii)	air contains oxygen	1	
		this would react with / oxidise the hydrogen allow this would react with / oxidise the iron ignore nitrogen		

			1	
	(iii)	cooled	1	
		ammonia condenses / liquefies (so can be separated)	1	
		nitrogen and hydrogen (remain as gases and) are returned to the reactor		
		allow recycled	1	
(b)	(i)	200 °C and 1000 atmospheres	1	
	(ii)	the reaction is reversible allow stated as equilibrium or forward / backward reaction anywhere in answer	1	
		forward reaction is exothermic so increased temperature lowers the yield of ammonia <i>allow converse</i>	1	
		a lower temperature would decrease rate of reaction <i>allow converse</i>	1	
		a higher pressure would increase the yield of ammonia because the forward reaction produces the least number of (gaseous) molecules moles	/	
		allow converse	1	
		higher pressures would involve high cost / energy	1	
		ignore risk / explosion		[12]