
All questions are for separate science students only

Q1.

This question is about substances used to make windows and window frames.

Figure 1 shows a window.

(a) Glass is made by heating sand with two other materials.

Which two other materials are used to make glass?

Tick (√) two boxes.

Clay

Graphite

Limestone

Sodium carbonate

Sodium hydroxide

(2)

Window frames need to be:

- easy to install
- resistant to damage.

The polymers poly(chloroethene) and HDPE are used to make window frames.

Table 1 shows information about poly(chloroethene) and HDPE.

Table 1		
Property	Poly(chloroethene)	HDPE
Density in g/cm3	1.4	0.92
Relative strength	72	25

(b) Suggest one advantage of using poly(chloroethene) compared with HDPE to make window frames.

Give one reason for your answer.

Use Table 1.

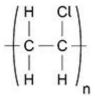
Advantage _____

Reason

- (2)
- (c) Suggest one advantage of using HDPE compared with poly(chloroethene) to make window frames.

Give one reason for your answer.

Use Table 1.


Advantage _____

Reason _____

(2)

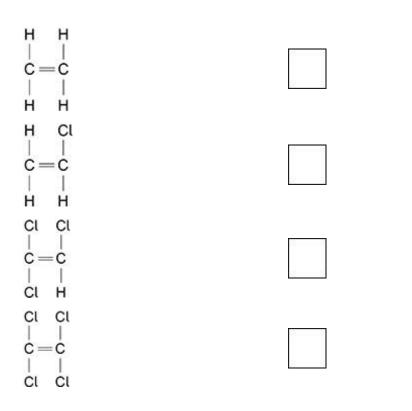

(d) Figure 2 shows the displayed structural formula of poly(chloroethene).

Figure 2

Which monomer is used to make poly(chloroethene)?

Tick (\checkmark) one box.

(1)

(e) Chlorine gas is used to produce poly(chloroethene).

Describe a test to identify chlorine gas. Give the result of the test. Test

Result

(2)

- (f) Wood can be used instead of polymers to make window frames.
 - Polymers are unreactive.
 - Polymers are produced from crude oil.
 - Wood breaks down in wet conditions.
 - Wood is produced from trees.

Suggest one advantage of using polymers and one advantage of using wood to make window frames. Advantage of polymers _____ Advantage of wood _____

Window frames can also be made from an alloy of aluminium.

(g) 6.00 kg of the alloy is used to make a window frame.

Table 2 shows the mass of each element in 6.00 kg of the alloy.

Table 2

Element	Mass in kg
Aluminium	5.94
Magnesium	0.04
Silicon	0.02

Calculate the percentage of aluminium in 6.00 kg of the alloy.

Percentage of aluminium = _____%

(2)

(h) Why is an alloy used instead of pure aluminium to make window frames?

(1) (Total 14 marks)

Q2.

This question is about poly(ethene) and polyesters.

(a) Poly(ethene) is produced from ethene.

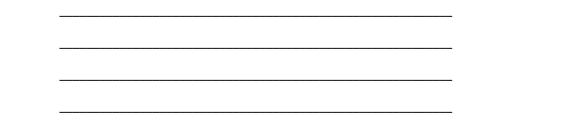
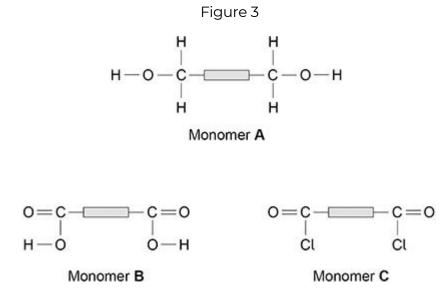

Figure 1 shows part of the displayed structural formula equation for the reaction. Complete Figure 1.

Figure 1

(2)

н н н н С n C = Cн н н (2) (b) Poly(ethene) is a thermosoftening polymer. Suggest why poly(ethene) is easier to recycle than thermosetting polymers. (2) Ethene produces different forms of poly(ethene). (C) How can different forms of poly(ethene) be produced from ethene? (1) Two different forms of poly(ethene) are: (d) high density poly(ethene) (HDPE) • low density poly(ethene) (LDPE). • Figure 2 represents part of the structures of HDPE and LDPE. Figure 2 HDPE LDPE


Explain why HDPE has a higher density than LDPE.

(2)

Figure 3 shows three monomers, A Band C.

Monomer A can react with monomer and with monomer to produce polyesters.

(e) Draw a circle on Figure 3 around an alcohol functional group.

(1)

- (f) Complete the table below to show the formula of the small molecule produced when:
 - monomer A reacts with monomer
 - monomer A reacts with monomer.

Reacting monomer	Formula of small molecule produced
A and B	
A and C	

(1)

(Total 9 marks)

Q3.

This question is about copper and alloys of copper.

Solders are alloys used to join metals together.

Some solders contain copper.

The table below shows information about three solders B and C.

Solder	Melting point in °C	Metals in solder
А	183	tin, copper, lead
В	228	tin, copper, silver
С	217	tin, copper, silver

(a) Solder B and solder C are now used more frequently than solder A for health reasons.

Suggest one reason why.

Use the table above.

(1)

(1)

(b) Suggest one reason why solders B and C have different melting points.

Use	the	table	above.

Copper can be obtained by:

- •• processing copper ores
- (c) recycling scrap copper.

Suggest three reasons why recycling scrap copper is a more sustainable way of obtaining copper than processing copper ores.

- 1_____
- 2_____
- 3_____

(3)

Copper is extracted from low-grade ores by phytomining.

Q4.

This question is about alloys.

Bronze and brass are both alloys which contain copper.

(a) Bronze is an alloy of copper and one other metal.

What is the other metal in bronze?

Tick (√) one box.

Aluminium	
Tin	

	Zinc	(1)
(b)	Give one use of brass.	(1)

Alloys of gold are used to make jewellery.

- (c) The proportion of gold in an alloy is measured in carats:
 - pure gold is 24 carat
 - The 580% gold osvi Shcawatinformation about two gold

rings, A and B contain only gold and silver. CompleteA and B.

below the table below.

Coldring	Carat	Mass of me	tal in grams
Gold ring	Carat	gold	silver
А		7	7
В	18	9	

(2)

(1)

- (d) Suggest two reasons why alloys of gold are used instead of pure gold to make jewellery.

(2)

Steels are alloys of iron.

(e) Spoons are made of stainless steel.

Spoons:

- are washed after use
- must not wear away quickly.

Suggest one reason why stainless steel is suitable for making spoons.

- (1)
- (f) Steel horseshoes are shaped to fit the feet of horses.
 Which type of steel is most easily shaped into horseshoes?
 Tick (√) one box.

High carbon steel	
Low carbon steel	
Stainless steel	

Q5.

This question is about materials used to make plates.

Plates are made from ceramics, paper or poly(propene).

(a) Paper plates are biodegradable and recyclable.

Which stage of a life cycle assessment (LCA) would contain this information? Tick (\checkmark) one box.

Disposal at the end of useful life Extracting and processing raw materials Manufacturing and packaging Use and operation during lifetime

(1)

(b) Which two processes are used to make ceramic plates?

⁽¹⁾ (Total 8 marks)

Tick (√) twoboxes.	
Forming a composite	
Galvanising with zinc	
Heating in a furnace	
Melting sand and boron trioxide	
Shaping wet clay	

(2)

(2)

Poly(propene) is produced from an alkene.

(c) Complete the sentences.

The name for very large molecules such as poly(propene) is

The name of the alkene used to produce poly(propene) is

(d) The alkene needed to make poly(propene) is produced from crude oil.
 Which two processes are used to produce this alkene from crude oil?
 Tick (√) two boxes.

Chromatography	
Cracking	2
Fermentation	
Fractional distillation	
Quarrying	

(2)

(e) What type of bond joins the atoms in a molecule of poly(propene)?

Tick (√) one box.	
Covalent	
lonic	
Metallic	

(1)

The table below shows information about two polymers used to make plates.

Polymer	Effect of heating the polymer
А	does not melt
В	melts at 50 °C

(f) What type of polymer is polymer A?

Use the table above.

<i>(</i>)									(1)
(g)	Why d	loes polym	er A beha	ave dif	ferently to pol	ymer	B when h	neated?	
	You	should	refer	to	crosslinks	in	your	answer.	
									(1
								(Total 10 m	

Q6.

This question is about materials used to make food plates.

Food plates are made from paper, polymers or ceramics.

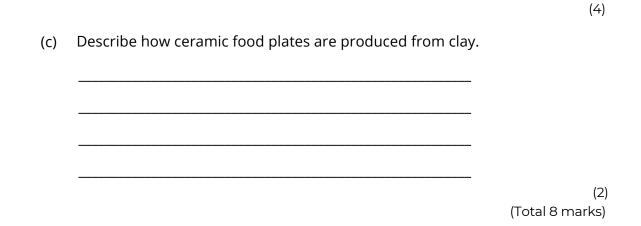
The table below shows information about plates of the same diameter made from each of these materials.

Fc	od plate mate	rial
Paper	Polymers	Ceramics

Raw material	Wood	Crude oil	Mined clay
Number packaged in 10 dm3 cardboard box	500	100	50
Average number of times used	1	400	1000
Biodegradable?	Yes	No	No
Recyclable?	Yes	Yes	No

(a) The table above does not show information about energy usage.

Suggest two pieces of information about energy usage which would help to produce a complete life cycle assessment (LCA) for the three food plate materials.


1	
2_	
-	

(2)

(b) Evaluate the use of these materials for making food plates.

You should use features of life cycle assessments (LCAs). Use the table above.

Q7.

Figure 1 shows a surfer on a surfboard.

Figure 1

Some surfboards are made from addition polymers.

Addition polymers are made from small alkene molecules.

(a) Which type of bonding is present in small alkene molecules?

Tick (\checkmark) one box.

Covalent	
lonic	

Metallic		
----------	--	--

(b) What is the functional group in these small alkene molecules?

Tick (√) one box.

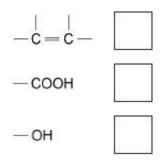
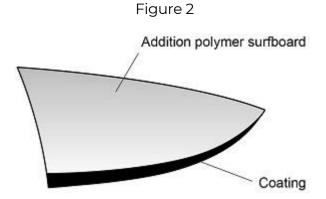
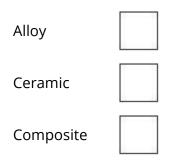



Figure 2 shows the structure of part of an addition polymer surfboard.


The outer surface of the surfboard is coated.

The coating is made from soda-lime glass fibres surrounded by a plastic.

(c) What type of material is the coating of the surfboard?

Tick (\checkmark) one box.

Nanotube	8
	B

(d) Complete the sentence.

Choose answers from the box.

air	ammonia	copper	
	limestone	sand	

The materials used to make the soda-lime glass fibres are sodium carbonate,

(2)

Some surfboards are made from wood.

The following table contains information about the materials in an addition polymer surfboard and a wooden surfboard.

	Addition polymer surfboard	Wooden surfboard
Relative strength	14 140	38
Cost (£ per m³)	50° — Difficult to recycle	ජ්රී Can be used as fuel
Density (kg/㎡)	Difficant to recycle	
Disposal at end of life		

(f) Suggest two advantages and two disadvantages of using addition polymers rather than wood to make surfboards.Use the table.

Advantages of addition polymers _____

(1)

	Disadvantages of addition polymers		
			(4
(g)	Calculate the volume of wood in a wooden surfboard of n Use the table above and the equation:	1ass 5.25 kg	
	Density in kg/m ³ = $\frac{Mass in kg}{Volume in m^3}$		
	Volume =	m3	
		(Total 14 m	() arks

Q8.

This question is about the corrosion of metals.

The corrosion of iron is called rusting.

(a) Plan an investigation to show that both water and air are needed for iron to rust.

You should include the results you expect to obtain.

Use apparatus and materials from the list:

- test tubes
- stoppers
- iron nails
- tap water
- boiled water
- drying agent
- oil.

(6)

A student investigated how the mass of three iron nallsB and C, increased after rusting.

The table shows the student's results.

Nail	Mass of nail before rusting in g	Mass of nail after rusting in g	Increase in mass of nail in g
А	1.22	1.30	0.08
В	1.25	1.36	Х
С	1.24	1.33	0.09

(b) Calculate X in the table.

X = _____ g

(1)

(c) Calculate the mean increase in mass of the three iron nails, A, B and C.

Use the table above and your answer to part (b).

Mean increase in mass = _____ g (1) (Total 8 marks)

Q9.

Figure 1 shows a surfer on a surfboard.

Surfboards are made from polymers.

Surfboards have a poly(styrene) core and an outer skin.

(a) Figure 2 shows the displayed structural formula of poly(styrene).

Figure 2

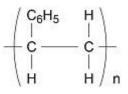


Figure 3 shows an incomplete displayed structural formula of the monomer styrene.

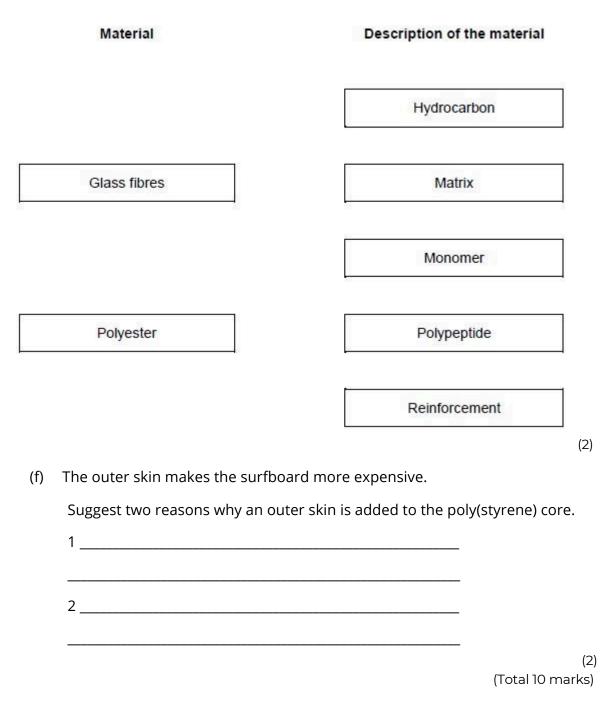

Complete Figure 3.

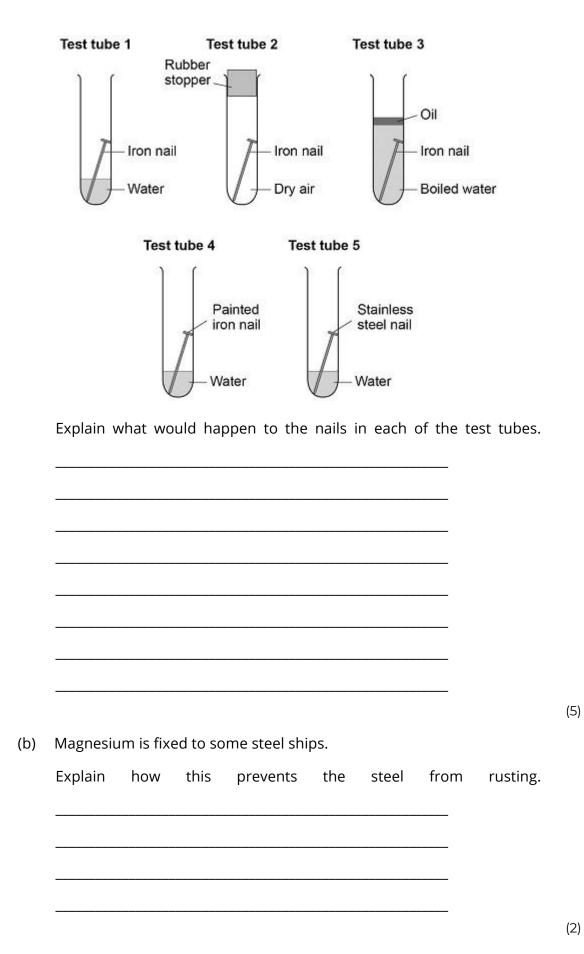
Figure 3			
C_6H_5	Н		
С	С		
Н	н		

Two	monomers, A and B, are needed to make the polyester.
Figui	re 4 shows how these two monomers are represented.
	Figure 4
	HO — — OH HOOC — — COOH
	Monomer A Monomer B
(b)	Name the functional group in monomer B.
(c)	Monomers A and B join together to produce a polyester and a small molecule.
	Name the small molecule.
(d)	
(d)	Name the small molecule.

The composite material contains glass fibres surrounded by a polyester.

(e) Draw one line from each material to the description of that material.

Q10.


This question is about the corrosion of metals.

The corrosion of iron is called rusting.

(a) A student investigated the rusting of iron.

This is the method used.

- 1. Set up the test tubes as shown in the figure below.
- 2. Leave the test tubes for 1 week.
- 3. Examine the nails for signs of rust.

(c) Explain why aluminium window frames do not corrode after they are made.

(Total 9 marks)

(2)

Q11.

Polymers are used to make fabrics.

Table 1 shows some properties of two polymers.

Table 1

Property	Polymer J	Polymer K
Density in g/cm3	0.9	1.4
Melting point in	165	260
°C Flame	Poor	Good
resistance Water	Low	High

absorption

(a) Polymer fabrics are used to make firefighter uniforms.

Complete Table 2 by deciding for each property whether polymer J or polymer K is best for firefighter uniforms. Use Table 1.

Density has been completed for you.

Tick three boxes.

Table 2

Property	Polymer J	Polymer K
Density in g/cm3	\checkmark	
Melting point in		
°C		
Flame resistance		

Water absorption

(b) A firefighter uniform made from polymetrals a mass of 6.0 kg

Calculate the mass of a uniform of the same size made from polymer

Use Table 1 and the equation:

mass of uniform made from polymer $K =$	density of polymer $K_{\sim 6.0}$
nass of uniformitade from polymer K	density of polymer J

Mass of uniform made from polymer K = ______ kg

(2)

(c) Polymers J and K are both thermosoftening polymers.

Polymer L is a thermosetting polymer.

Why would polymer L be better than polymers J and K for firefighter uniforms?

_

Tick one box.

Polymer L burns easily	
Polymer L does not biodegrade	
Polymer Lwill not melt	

(1)

Polymers J and K are made from crude oil.

In the past, firefighter uniforms were made from wool.

Wool is obtained from sheep.

(d) Why are many fabrics made from polymers instead of wool?

Tick one box.

Polymers are man-made

Polymers are more hard-wearing

	Wool is more easily available		
	Wool is more flame resistant		
			(1)
(e)	Why is wool more sustainable thar uniforms?	i polymers J and K fo	or making firefighter
			(2)
			(Total 8 marks)

Q12.

This question is about alloys of copper.

(a) Complete the sentence.

Choose the answer from the box.

aluminium iron magnesium	tin
--------------------------	-----

Bronze is an alloy of copper and ______.

(1)

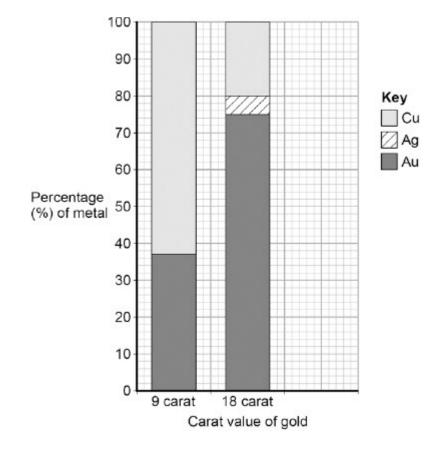
Brass is an alloy of copper and zinc.

The table shows the percentage by mass of copper and zinc in two types of brass.

Type of brass	Percentage (%) by mass			
Type of brass	Copper	Zinc		
Red brass	90	10		
Yellow brass	Х	30		

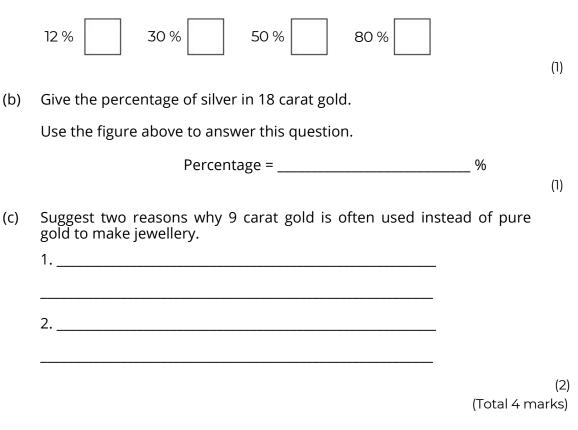
(b) Calculate value X in the table above.

Percentage by mass X = ______%


AQA Chemistry GCSE - Using Materials

(c)	Calculate	the mas	s of cop	oper in	1100	g of	red	brass.	
				Ma	ss =			g	(2)
(d)	What	is	meant		by	an		alloy?	
									(1)
(e)		-	s of atom						
	Explain wr		s is softer t our		w brass wn	s. Use the		e above wledge.	
									(2)
(f)	Some mu	isical instru	uments are	e made	of				
	brass. Par	rts of thes	e instrume	nts can	be				
	gold plate	d. What is	the carat	number	of				
	picke(go) di	he box.							
	9	18	22	24			(Total 8 m	(1) harks)

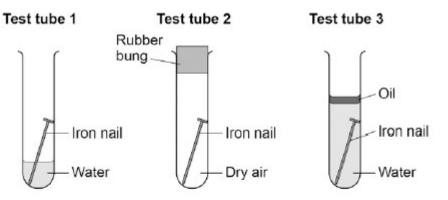
Q13.


Gold is mixed with other metals to make jewellery.

The figure below shows the composition of different carat values of gold.

(a) What is the percentage of gold in 12 carat gold?

Tick one box.

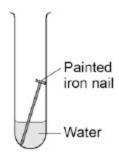


Q14.

The figure below shows six test tubes a student set up to investigate the rusting of iron.

This is the method used for each test tube.

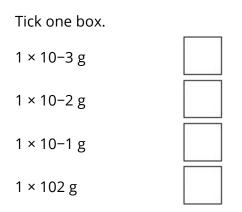
- 1. Measure the mass of the nail using a balance.
- 2. Leave the nail in the test tube for 6 days.
- 3. Measure the mass of the nail after 6 days.



Test tube 4

Test tube 6

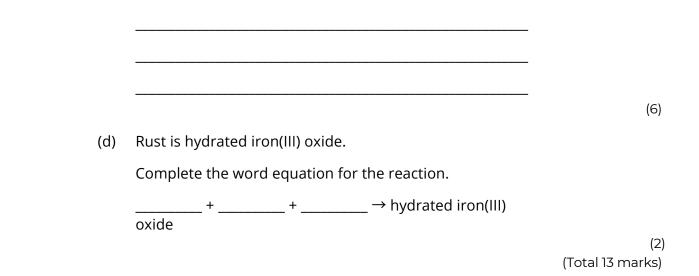
Water


The table below shows the student's measurements.

Test tube	Mass of nail in g	Mass of nail after 6 days in g
1	8.45	8.91
2	8.46	8.46
3	8.51	8.51
4	9.65	9.65
5	9.37	9.45
6	9.79	9.79

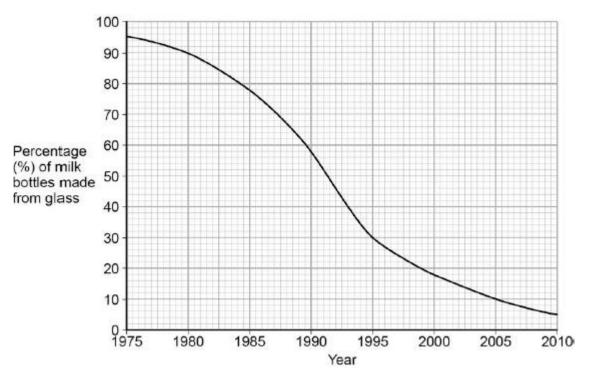
Water

(a) What is the resolution of the balance the student used?


(C)

(1)

(b) Calculate the difference in percentage increase in mass after 6 days of the nail in test tube 1 and the nail in test tube 5.


Give your answer to three significant figures.

Q15.

Plastic and glass can be used to make milk bottles.

The figure below shows the percentage of milk bottles made from glass between 1975 and 2010.

(a) Plot the points and draw a line on the figure above to show the percentage of milk bottles made from materials other than glass between 1975 and 2010.

(3)

(b) The table below gives information about milk bottles.

Glass milk bottle Plastic milk bottle

Raw materials	Sand, limestone, Salt	Crude oil
Bottle material	Soda-lime glass	HD poly(ethene)
Initial stage in production of bottle material	used to produce	Production of naphtha fraction.
Maximum temperature in production process	1600 °C	850 °C
Number of times bottle can be used for milk	25	1
Size(s) of bottle	0.5 dm3	0.5 dm3, 1 dm3, 2 dm3, 3 dm3
Percentage (%) of recycled material used in new bottles	50 %	10 %

Evaluate the production and use of bottles made from soda-lime glass and those made from HD poly(ethene).

Use the information given and your knowledge and understanding to justify your choice of material for milk bottles.

(6) (Total 9 marks)

Q16.

This question is about substances containing carbon atoms.

- (a) Diamond is made of carbon atoms.
 - (i) Diamond is used for tips of drills.

Figure 1 shows a drill.

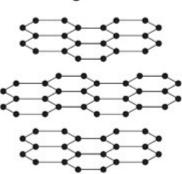
© Kershawj/iStock

Give one reason why diamond is used for tips of drills.

(ii) Diamond nanoparticles can be made.

Use the correct answer from the box to complete the sentence.

hundred	million	thousand
---------	---------	----------


Nanoparticles contain a few ______ atoms.

(1)

(1)

(b) Graphite is made of carbon atoms.

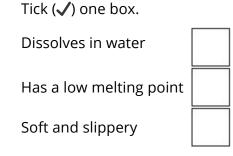
Figure 2 shows the structure of graphite.

(i) What type of bonding does graphite have?

Tick (✔) one box.

Covalent	
lonic	
Metallic	

(1)


(ii) How many carbon atoms does each carbon atom bond to in graphite?

Tick (✔) one box.

1	
2	
3	
4	

(1)

(iii) What is a property of graphite?

(1)

(c) Poly(ethene) is made of carbon and hydrogen atoms.

Poly(ethene) is a thermosoftening polymer.

Figure 3 shows the structure of a thermosoftening polymer.

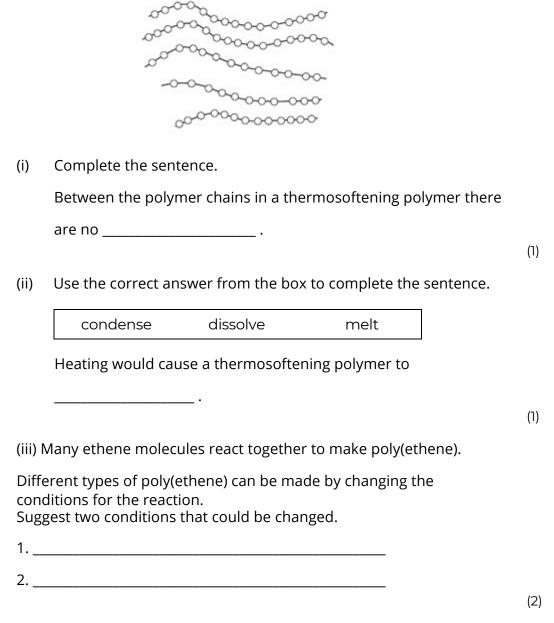
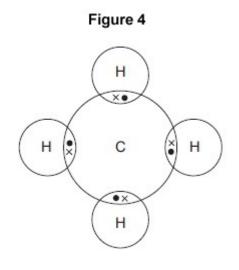



Figure 3

(d) Figure 4 shows how the atoms are bonded in methane.

(i) What is the formula for methane?

Tick (✔) one box.

C4H	
CH4	
C4H4	

(ii) Methane has a low boiling point.

What does methane consist of?

Tick (✔) one box.

Charged ions

A giant lattice

Small molecules

(1) (Total 11 marks)