Mark schemes

Q1.

(a)	limestone	1
	sodium carbonate	1
(b)	(advantage) stronger	1
	(reason) less easily damaged	1
(c)	(advantage) lower density	1
	(reason) lighter (to install)	1
(d)	H CL C == C H H	1
(e)	(add damp) litmus paper	
	(litmus paper) is bleached or (litmus paper) turns white <i>ignore (litmus paper) turns red</i>	1
(f)	(polymers) last a long time ignore references to cost allow break down slowly	1
	(wood) renewable allow trees can be replanted allow anothetic reasons	
		1
(g)	(percentage of aluminium =) $\frac{5.94}{6.00} \times 100$	1

= 99 (%)

(h) (alloy is) harder (than pure aluminium)
 allow (alloy is) stronger (than pure aluminium)
 ignore references to cost

1

1

[14]

Q2. (a)	$n \stackrel{H}{\underset{l}{\overset{l}{}{\underset{l}{}{\underset{l}{}{\underset{l}{}{\underset{l}{}{\underset{l}{}{\underset{l}{}{\underset{l}{}{\underset{l}{}{\underset{l}{}{\underset{l}{}{\underset{l}{}{\underset{l}{}{\underset{l}{}{\underset{l}{l$	
	if equation incorrect allow 1 mark for 5 single bonds or allow 1 mark for n	
(b)	(poly(ethene)) melts allow converse statements about thermosetting polymers allow thermosoftening polymers melt	2
	(so) can be reshaped (into new products)	1
(c)	use different (reaction) conditions allow use different temperatures / pressures	1
(d)	(in HDPE) polymer chains / molecules are closer together allow converse statements about LDPE allow (HDPE has) unbranched polymer chains / molecules	1
	(so) more atoms per unit volume allow (so) more molecules per unit volume	
(e)	circle around HO– or –OH on monomer A	1

(f) H2O

and HCl

must be in this order

[9]

1

Q3.			
((a)	(lead is) toxic / poisonous	
		allow (lead is) harmful	
		ignore (lead is) dangerous / deadly /	
		lethal	1
((b)	the proportions (of metals) are different	1
			I
((c)	any three from:	
		 recycling conserves copper ores recycling uses less energy 	
		 recycling uses less energy recycling reduces waste 	
		ignore references to cost	
		allow copper ores are finite	
		allow recycling reduces use of landfill	
		 mining / quarrying cause environmental impacts 	
		allow description of environmental	
		impact caused by mining / quartying	3
	(-1)		
((d)	grow plants (on land containing copper ores)	
		allow namea plant	1
		plants are burnt (to produce ash)	1
			I
		ash dissolved in acid (to produce a solution of a copper compound)	1
			I
		electrolysis of solution (containing a copper compound)	
		Or displacement (of copper) from solution (containing a copper	
		compound)	
		allow addition of scrap iron to the	
		solution (of a copper compound)	
			1
((e)	any two from:	
		high grade ores still available	
		 land not available phytomining takes a long time 	
		 new technology 	
		allow demand not high enough	

			2	[11]
Q4	(a)	tin	1	
	(b)	any one from:		
		 ornaments musical instruments hinges / knobs / screws allow any correct use of brass 	1	
	(c)	(A) 12 (carat)	1	
		(B) 3 (grams)	1	
	(d)	 any two from: (alloy of gold is) harder (alloy of gold is) cheaper aesthetic reasons allow converse statements about pure gold 	2	
	(e)	any one from:	_	
		 does not corrode <i>allow will not rust</i> does not react with water is hard 	1	
	(f)	low carbon steel	1	[8]
Q5	(a)	disposal at the end of useful life	1	
	(b)	heating in a furnace	1	
		shaping wet clay	1	
	(c)	polymers	1	

	propene allow (a) monomer		
		1	
(d)	cracking	1	
	fractional distillation	1	
(e)	covalent	1	
(f)	thermosetting	1	
(g)	polymer A has crosslinks (between polymer molecules)		
	polymer B has no crosslinks (between polymer molecules)	1	[10]
Q6.			
(a)	any two from:		
	 energy used in: extraction of raw materials processing raw materials allow energy used to make food plate materials 		
	 manufacturing transportation cleaning non-disposable plates disposal recycling 		
		2	
(b)	Level 2: A judgement, strongly linked and logically supported by a sufficient range of correct reasons, is given.	3-4	
	Level 1: Some logically linked reasons are given. There may also be a simple judgement.	1_7	
	No relevant content	0	
	Indicative content		
	Raw materials Trees are renewable Crude oil and clay are finite 		

Manufacturing and packaging

- Paper plates use the least packaging so conserve raw materials
- Paper plates need less transportation overall as more plates in a 10 dm3 cardboard box

Use and operation

- Paper plates are single use so must be replaced most often
- Ceramic plates last longer than polymer plates so must be replaced less often

Disposal

Polymer / ceramic plates take up landfill which is running out

1

1

1

1

1

1

1

[8]

- Paper / polymer plates can be used to make new products
- Recycling conserves raw materials

Reasoned judgement

(c) (wet) clay is shaped

(and) heated in a furnace

allow (and) heated in a kiln / oven allow (and) fired

Q7.

(a) covalent (b) -c = c -(c) composite (d) limestone sand *either order* (e) *ignore corrosion / erosion / rotting / rusting* any two from:

- (makes the board)
- strong
- hard
- tough

	 waterproof durable allow long lasting aesthetic reasons rigid less friction	2	
(f)	(advantages of addition polymers) low(er) cost	Z	
		1	
	low(er) density allow light(er)	1	
	(disadvantages of addition polymers) weak(er)		
	allow (more) likely to break	1	
	hard(er) to dispose of ignore references to recycling or use as a fuel	1	
(g)	an answer of 0.035 (m3) scores 3 marks. allow 2 marks for an answer of 0.105 (m3) (addition polymer)		
	$150 = \frac{5.25}{\text{volume}}$	1	
	(volume =) $\frac{5.25}{150}$		
	(volume =) 0.035 (m3)	1	
			[14]

Q8.

(a) Level 3: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

5-6

Level 2: The design/plan would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically

	sequenced.	3-4	
	Level 1: The design/plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	1-2	
	No relevant content	0	
	Indicative content		
	Plan – allow diagrams to indicate content		
	 three test tubes containing nails test tube 1 - open test tube with water test tube 2 - stoppered test tube with drying agent test tube 3 - test tube with boiled water test tube 3 - sealed with oil leave for several days observe results 		
	Results		
	 test tube 1 – nail rusts test tube 2 – nail does not rust test tube 3 – nail does not rust 		
(b)	0.11 (g)	1	
(c)		I	
	$\frac{0.08 + X + 0.09}{3}$		
	= 0.09 (g)		
	allow 0.09(3333) allow ecf from part (b)	4	
		I	[9]
Q9.			
(a)	C=C bond in correct position	1	
	3× C-H and 1× C-C bond in correct positions do not accept any additional bonds or atoms ignore brackets and n before and after displayed structural formula		
	an answer of	1	

scores 2 marks

- (b) carboxylic acid (group) *allow carboxyl (group)*
- (c) water

allow H2O

(d) (polyester is) thermosoftening allow (polyester is) thermoplastic ignore thermoforming

> (polyester has) no cross-links allow intermolecular forces are weak do not accept references to breaking covalent bonds or breaking chains

(e) hydrocarbon

2

1

1

1

1

(f) any two from:

(to make the board)

- harder
- stronger
- tougher
- more rigid

must be implied comparative

	statements		
	waterproof	2	[10]
010			
(a)	Tube 1: (nail) rusts because air / oxygen and water present	1	
	Tube 2: (nail) does not rust because no water allow Tube 2: (nail) does not rust		
	because only all 7 oxygen	1	
	Tube 3: (nail) does not rust because no air / oxygen allow Tube 3: (nail) does not rust because only water		
		1	
	Tube 4: (nail) does not rust because paint is a barrier (to water / air /		
	allow Tube 4: (nail) does not rust because paint is a protective layer / coating (against water / air / oxygen) or allow Tube 4: (nail) does not rust because paint protects it from water / air		
	, oxygen	1	
	Tube 5: (nail) does not rust because stainless steel resistant to corrosion		
	allow Tube 5: (nail) does not rust because stainless steel does not corrode allow Tube 5: (nail) does not rust because stainless steel contains nickel / chromium		
	lf no other mark awarded allow 1 mark for correct rusting pattern in all 5 tubes	1	
<i>(</i> 1.)			
(b)	allow converse		
	magnesium is more reactive (than iron) allow magnesium is more reactive (than steel)	1	
	(so magnesium) provides sacrificial protection allow (so magnesium) corrodes / reacts instead of iron / steel allow (so magnesium) corrodes / reacts before iron / steel		

ignore references to protective layers ignore references to magnesium rusting 1 (c) (aluminium has a coating of) aluminium oxide 1 (so the aluminium oxide) protects the metal (from further corrosion) allow (so aluminium oxide) prevents water / air / oxygen from reaching the metal 1 [9]

Q11.

(a)

property	J	К
density in g/cm3		
melting point in °C		\checkmark
flame resistance		V
absorption	V	

three correct = 2 marks one or two correct = 1 mark

 1.4×6.0

(b) 0.90

= 9.3 (kg)

allow 9.3(333...)(kg)

an answer of 9.3(333...)(kg) scores 2 marks

2

1

1

1

1

(c) polymer L will not melt

(d) polymers are more hard-wearing

- (e) any two from:(wool / sheep) renewable
 - allow wool grows back, etc.
 - (wool) will not run out

	ignore (wool is) readily available		
	(crude oil) non-renewable <i>allow finite</i>		
	 (crude oil) will run out <i>ignore references to cost ignore properties from tables 1 and 2</i> 	2	[8]
012			
(a)	tin	1	
(b)	70 (%)	I	
		1	
(c)	$\frac{90}{100} \times 1100$		
	– 990 (d)	1	
		1	
(d)	mixture of metals	1	
(e)	(red brass) contains more copper allow converse	1	
	(so) layers slide more easily		
	or layers are less distorted		
(f)	24	1	
	27	1	[8]
			[0]
Q13. (a)	50		
		1	
(b)	5%	1	
(c)	any two from:		
	 cost (9 carat is cheaper) pure gold is soft or 24 carat gold is soft 		

or 9 carat gold is harder allow 9 carat gold is stronger allow gold is an alloy in 9 carat gold can change the colour 2 [4] Q14. (a) 1 × 10-2 g 1 0.46×100 (b) 8.45 1 (test tube 1) 5.44 % and (test tube 2) 0.854 % 1 4.586 1 4.59 1 allow ecf answer correctly calculated to 3 significant figures allow 4.59 with no working for 4 marks allow 4.586 with no working for 3 marks (c) Level 3 (5–6 marks): Detailed and coherent conclusions based on the evidence together with an evaluation are given in a response that is coherent and well-structured. A range of relevant points is made demonstrating a broad understanding of the key scientific ideas. Level 2 (3–4 marks): An attempt to relate relevant points and draw conclusions or to make an evaluation. The logic may be inconsistent at times but builds towards a coherent argument. Level 1 (1-2 marks): Simple descriptive statements are made. The logic may be unclear and any conclusions, if present, may not be consistent with the reasoning. 0 marks: No relevant content. Indicative content Simple statements

- nail rusted in test tubes 1 and 5
- test tubes 1 and 4 contained air / oxygen and water
- nail did not rust in test tubes 2, 3 and 4
- test tube 2 no water present
- test tube 3 no air / oxygen present
- test tube 4 paint stopped rusting
- test tube 6 scratched galvanised iron did not rust
- test tube 6 galvanising stopped rusting

Conclusions

- both water and oxygen are required for rusting
- coatings that prevent water and oxygen reaching the metal
- prevent rusting
- when paint is scratched, iron comes into contact with water and
- oxygen and the iron rusts
- in test tube 5 less iron exposed so less rusting than in test tube
 1

galvanising is better at resisting rusting than paint when scratched

zinc is more reactive than iron, so when galvanised metal is scratched, zinc reacts with water and oxygen first / sacrificially oil and paint are effective at preventing rusting when the

Evaluation coating is intact

- galvanising is the most effective coating because it prevents rusting even when scratched.
- (d) iron + oxygen + water

all three needed for 2 marks 2 correct = 1 mark ignore air

> 2 [13]

6

Q15.

(a) all points correct

±1 small square allow 1 mark for 6 or 7 plots

2

Year	Percentage (%) of
	bottles made from
	other materials
1975	5
1980	10
1985	22
1990	42
1995	70
2000	72
2005	90
2010	95

(b) Level 3 (5–6 marks):

A detailed and coherent argument is provided which considers a range of issues and comes to a conclusion consistent with the reasoning. Level 2 (3–4 marks):

An attempt to describe the advantages and disadvantages of the production and uses is made, which comes to a conclusion. The logic may be inconsistent at times but builds towards a coherent argument. Level 1 (1–2 marks):

Simple statements made. The logic may be unclear and the conclusion, if present, may not be consistent with the reasoning. 0 marks:

No relevant content. Indicative content

- glass 2 stages in production of soda-lime glass glass –
- second stage, heating sand, limestone and sodium carbonate
- HDPE 3 stages in production HDPE second stage, cracking
- of naphtha to obtain ethene HDPE third stage,
- polymerisation of ethene fewer stages in glass production,
- may be quicker higher temperature in glass manufacture, therefore maybe higher energy requirement glass bettle energy
- therefore maybe higher energy requirement glass bottle can
 be reused consideration of collection / cleaning costs to
- reuse glass bottles other glass products can be made from
- recycled glass plastic has greater range of sizes both
- produced from limited raw materials higher percentage
- recycled materials in glass conserves raw materials
- •

This indicative content is not exhaustive, other creditworthy responses should be awarded marks as appropriate.

[9]

6

Q16.

(a) (i) hard *ignore strong*1

(ii) hundred
(b) (i) Covalent
(ii) 3

	(iii)	Soft and slippery	1	
(c)	(i)	cross-links allow bonds ignore links do not accept intermolecular	1	
	(ii)	melt	1	
	(iii)	any two from: • temperature <i>allow heat(ing)</i>		
		pressure catalyst	2	
(d)	(i)	CH4	1	
	(ii)	Small molecules	1 [11]