Questions are for both separate science and combined science students unless indicated in the question

Q1.				
	This	question is about materials used to make	plates.	
	Plate	s are made from ceramics, paper or poly(propene).	
	(a)	Paper plates are biodegradable and recy	clable.	
		Which stage of a life cycle assessment (Linformation? Tick (∨) one box.	.CA) would contain this	
		Disposal at the end of useful life		
		Extracting and processing raw materials	5	
		Manufacturing and packaging		
		Use and operation during lifetime		
	(b)	Which two processes are used to make of		(1)
		Tick (\lor) two boxes. (separate only)		
		Forming a composite		
		Galvanising with zinc		
		Heating in a furnace		
		Melting sand and boron trioxide		
		Shaping wet clay		
				(2)
	Poly(propene) is produced from an alkene.		
	(c)	Complete the sentences. (separate only	y)	

The name for very large molecules such as poly(propene) is

	·	
	The name of the alkene used to produce poly(propene) is	
	·	(2)
(d)	The alkene needed to make poly(propene) is produced from crude oil.	
	Which two processes are used to produce this alkene from crude oil?	
	Tick (✓) two boxes.	
	Chromatography	
	Cracking	
	Fermentation	
	Fractional distillation	
	Quarrying	45.
(e)	What type of bond joins the atoms in a molecule of poly(propene)?	(2)
(0)	Tick (\vee) one box.	
	Covalent	
	Ionic	
	Metallic	
		(1)
The	table below shows information about two polymers used to make plates.	

Polymer	Effect of heating the polymer
А	does not melt
В	melts at 50 °C

	Use	the	table	above.	(separate	only)
	-					
(g)	Why doe	 s polymer	A behave diffe	erently to polym	er B when heat	ed? You
	- should	refer to	crosslinks	in your a	nswer.(separate	e only)
						(Total 10
						(TOTAL TO
	_					
	-					
	– question i	s about ma	terials used to	make food plate	es.	
This of	l plates are	e made froi	m paper, polyn	ners or ceramics	i.	nade from
This of Food The t	l plates are	e made froi w shows in	m paper, polyn formation abou	ners or ceramics	ame diameter n	nade from
This of Food The t	I plates are	e made froi w shows in	m paper, polyn formation abou F	ners or ceramics ut plates of the s ood plate mater	ame diameter m	nade from
This of Food The treach	I plates are table below of these r	e made froi w shows in	m paper, polyn formation abou F Paper	ners or ceramics ut plates of the s ood plate mater Polymers	ame diameter mial	nade from
This of Food The theach	I plates are table below of these r	e made froi w shows in naterials.	m paper, polyn formation abou F	ners or ceramics ut plates of the s ood plate mater	ame diameter m	nade from
Food The t each Raw Num	I plates are table below of these r	e made from shows in materials.	m paper, polyn formation abou F Paper	ners or ceramics ut plates of the s ood plate mater Polymers	ame diameter mial	nade from
This of Food The theach Raw Num 10 d Aver time	I plates are table below of these r material mber packa dm3 cardb rage numbes used	e made from which shows in materials. Aged in oard box per of	m paper, polyn formation abou Fo Paper Wood	ners or ceramics ut plates of the s ood plate mater Polymers Crude oil	ial Ceramics Mined clay	nade from
Food The t each Raw Num 10 d Aver time Biod	I plates are table below of these r material mber packa Im3 cardb	e made from which shows in materials. Aged in oard box per of	m paper, polyn formation abou F Paper Wood 500	ners or ceramics ut plates of the s ood plate mater Polymers Crude oil 100	rial Ceramics Mined clay	nade from

Ξν	valuate the use of these materials for making food plates.
	ou should use features of life cycle assessments (LCAs).
JS	se the table above.
_	
_	
_	
_	
_	
_	
_	
_	
_	
-	
_	
e	escribe how ceramic food plates are produced from clay. (separate only)
_	
-	
_	
_	

Q3. Figure 1 shows a surfer on a surfboard.

Figure 1

Some surfboards are made from addition polymers.

Addition polymers are made from small alkene molecules.

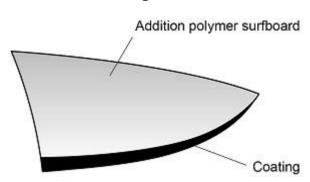
(a) Which type of bonding is present in small alkene molecules? $\label{eq:tick} \mbox{Tick } (\lor) \mbox{ one box.}$

Covalent

Ionic

Metallic

(1)


(b) What is the functional group in these small alkene molecules? Tick (\lor) one box.

(1)

Figure 2 shows the structure of part of an addition polymer surfboard.

The outer surface of the surfboard is coated.

Figure 2

The coating is made from soda-lime glass fibres surrounded by a plastic.

Tick (√) one b	box. (separate only)	
rick (v) one s	(separate only)	
Alloy		
Ceramic		
Composite		
Nanotube		
Complete the	e sentence.	
•		
Complete the	e sentence. Hers from the box. (separate only)	7
•	ers from the box. (separate only)	
Choose answe	ers from the box. (separate only)	
Choose answe	r ammonia copper limestone sand	
Choose answe	r ammonia copper	
Choose answer	r ammonia copper limestone sand	

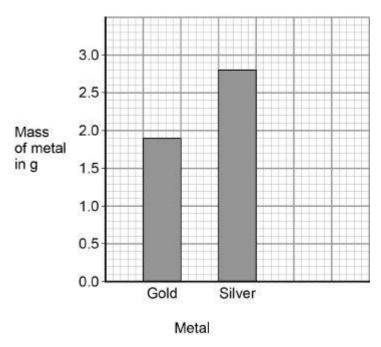
ome surfboards are mac	lo from wood	
ome sumboards are mad	le iroin wood.	
he following table contain olymer surfboard and a v		e materials in an addition
	Addition polymer surfboard	Wooden surfboard
Relative strength	14	38
Cost (£ per m)³	140	150 Can be used as fuel
Density (kg/m)³	Difficult to recycle	Can be used as ruet
Disposal at end of life		
polymers rather tha Use the table.	tages and two disadvant n wood to make surfboa ion polymers	
polymers rather tha Use the table. Advantages of addit	n wood to make surfboa	rds.

Volume = _____ m3

(3)

(Total 14 marks)

Q4.


A 9 carat gold ring is made from a mixture of metals.

The table below shows the mass of different metals in the ring.

The mass of the ring is 5.0 g

Metal	Mass of metal in g
Gold	1.9
Silver	2.8
Copper	0.3

(a) Plot the data for copper from the table above on the graph below. (separate only)

(2)

(b) The cost of gold is £30 per gram.

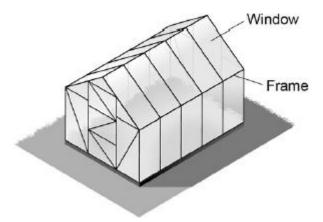
Calculate the cost of the gold used in the 9 carat gold ring.

Use the table above.(separate only)

	Cost of gold = £
Ring	s can be made from 22 carat gold. The ratio of the mass of gold in 22
cara	t gold compared to 9 carat gold is
	ulate the mass of gold in a 22 carat gold ring of mass 5.0 g
Use	the table above.(separate only)
	Mass of gold =
<u>P</u> ure	gold is 24 carats.
cara	gest two reasons why silver and copper are mixed with gold to make 9 t gold rings.(separate only)
 2	per is obtained from copper ores or by recycling copper.
 2	per is obtained from copper ores or by recycling copper. Copper ores are non-renewable.
 2	per is obtained from copper ores or by recycling copper.
2 Copp	per is obtained from copper ores or by recycling copper. Copper ores are non-renewable. Copper ores can be obtained by mining.
2 Copp	per is obtained from copper ores or by recycling copper. Copper ores are non-renewable. Copper ores can be obtained by mining. Some scrap copper goes to landfill sites.
Copp	Der is obtained from copper ores or by recycling copper. Copper ores are non-renewable. Copper ores can be obtained by mining. Some scrap copper goes to landfill sites. three reasons why we should use recycled copper instead of copper
Copp	per is obtained from copper ores or by recycling copper. Copper ores are non-renewable. Copper ores can be obtained by mining. Some scrap copper goes to landfill sites. three reasons why we should use recycled copper instead of copper a copper ores.
2 Copp Give from 1	per is obtained from copper ores or by recycling copper. Copper ores are non-renewable. Copper ores can be obtained by mining. Some scrap copper goes to landfill sites. three reasons why we should use recycled copper instead of copper a copper ores.

Q5.

		(Total 10 n	(3) narks)
Disp	osable cups are	made from coated paper or poly(styrene).	
The	diagram below ı	represents the structure of poly(styrene).	
		$ \begin{pmatrix} C_6H_5 & H \\ C & C \end{pmatrix} $ $ \begin{pmatrix} C_6H_5 & H \\ C & C \end{pmatrix} $ $ \begin{pmatrix} C_6H_5 & H \\ C & C \end{pmatrix} $	
(a)	Which small m	olecule is used to produce poly(styrene)?	
	Tick one box.	(separate only)	
	H H H		
	C ₆ H ₅ H C == C H H		
	CH ₃ H C == C H H		
	C ₆ H ₅ C ₆ H ₅ C == C H H H		
(b)	Which process	is used to make poly(styrene) from small molecules?	(1)
(-)	Tick one box.	(separate only)	
	TION OTTO DOM	(Separate Only)	
	Cracking		
	Distillation		


Polymerisation				
Complete the sentences.				
Choose answers from the be	ox. (separate only)			
ceramics	composites	1	four	ma
monomers	pol	ymers	two	
Poly(styrene) is produced fi	rom small molecules ca	ılled		
When poly(styrene) is made join to form large molecules.	- 9,	styrene	molecules	
_				
These large molecules are o	called		- •	
These large molecules are of the table below gives some				
		oosable cu		
	e information about disp	posable cu Polystyi	ps.	
The table below gives some	e information about disp Coated paper cups	Polystyi Cru	ps. rene cups	
The table below gives some Source of raw materials Energy to make 1 cup in	Coated paper cups Wood	Polystyi Cru	ps. rene cups de oil	
The table below gives some Source of raw materials Energy to make 1 cup in arbitrary units	Coated paper cups Wood 550	Polystyi Cru- 2	ps. rene cups de oil	
The table below gives some Source of raw materials Energy to make 1 cup in arbitrary units Biodegradable	Coated paper cups Wood 550 Yes No nd disadvantages of usiosable cups.	Polystyr Cru 2 Y	ps. rene cups de oil 200 No res paper and	
Source of raw materials Energy to make 1 cup in arbitrary units Biodegradable Recyclable Compare the advantages ar poly(styrene) to make dispo	Coated paper cups Wood 550 Yes No nd disadvantages of usiosable cups.	Polystyr Cru 2 Y	ps. rene cups de oil 200 No res paper and	

		(Total
on the life cycle	assessm	
on the life cycle	e assessm	
on the life cycle Coated cup	l paper	
Coated	l paper os	Poly(styrene)
Coated	paper pos	Poly(styrene)
Coated cu _l Wo	paper ps	Poly(styrene) cups Crude oil
Coated cup Wo	paper pos	Poly(styrene) cups Crude oil 1.9
Coated cup Wo 8. J 55	l paper pos	Poly(styrene) cups Crude oil 1.9 200
	ated paper or po	eated paper or poly(styrence

	nergy needed to prod e above. Give yo			
			in standard	form.
Use the tabl		our answer Energy =	in standard	form.
Use the tabl	e above. Give yo	Energy =	in standard	form.
Use the tabl Melamine is a pore	e above. Give yo	Energy =	in standard	form.
Use the tabl Melamine is a po	e above. Give yo	Energy =	in standard	form.
Use the tabl Melamine is a pore	e above. Give yo	Energy =	in standard	form.
Use the tabl Melamine is a po	e above. Give yo	Energy =	in standard	form.
Use the tabl	e above. Give yo	Energy =	in standard	form.

Q7.

The diagram shows a greenhouse.

A greenhouse frame can be made from wood or aluminium.

Table 1 gives some information about wood and aluminium.

Table 1

	Wood	Aluminium
Raw material	Renewable	Non-renewable
Mass of greenhouse frame in kg	80	20
Useful lifetime in years	20	50
End of useful life	Can be chopped up and used as fuel	Can be recycled into new aluminium products

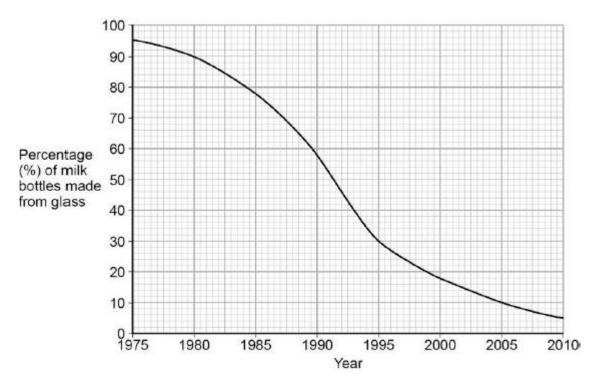
(a)	Evaluate the use of each material for making greenhouse frames.
	Use Table 1.

Green	house frames are transported by lorry. The lorry used can carry a
maxin	num load of 12 tonnes. Calculate the largest number of wooden
be tra Use T	house frames which could nsported by the lorry. able 1. g = 1 tonne
_	Number of wooden greenhouse frames =
<u>I</u> t is m than f	nore sustainable to make greenhouse frames from recycled aluminium rom aluminium ore.
Give t	wo reasons why.
1	
 2	

Table 2

Table 2 gives information about glass and a polymer.

	Glass	Polymer
Density in g / cm3	2.8	1.2
Cost in £ per m2	20	28
Effect of sunlight	No effect	Discolours over time


Suggest one advantage of making greenhouse windows from the polymer rather than from glass.

Use Table 2.

Q8.

Plastic and glass can be used to make milk bottles.

The figure below shows the percentage of milk bottles made from glass between 1975 and 2010.

(a) Plot the points and draw a line on the figure above to show the percentage of milk bottles made from materials other than glass between 1975 and 2010.

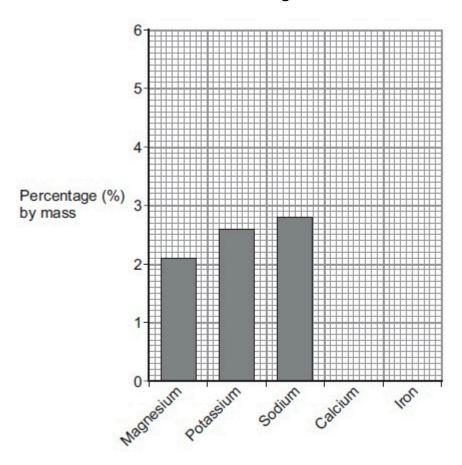
(3)

(b) The table below gives information about milk bottles.

	Glass milk bottle	Plastic milk bottle
Raw materials	Sand, limestone, salt	Crude oil
Bottle material	Soda-lime glass	HD poly(ethene)
Initial stage in production of bottle material	Limestone and salt used to produce sodium carbonate.	Production of naphtha fraction.

Q9.

Maximum temperature in production process	1600°C	850°C
Number of times bottle can be used for milk	25	1
Size(s) of bottle	0.5 dm3	0.5 dm3, 1 dm3, 2 dm3, 3 dm3
Percentage (%) of recycled material used in new bottles	50 %	10 %


ecycled material used in new bottles valuate the production and use of bottles made from soda-lime glass and nose made from HD poly(ethene). se the information given and your knowledge and understanding to justify	Percentage (%) of recycled material used in new bottles Evaluate the production and use of bottles made from soda-lime glass and those made from HD poly(ethene). Use the information given and your knowledge and understanding to justify your choice of material for milk bottles.	_ ()			
ecycled material used in new bottles valuate the production and use of bottles made from soda-lime glass and nose made from HD poly(ethene). se the information given and your knowledge and understanding to justify	recycled material used in new bottles Evaluate the production and use of bottles made from soda-lime glass and those made from HD poly(ethene). Use the information given and your knowledge and understanding to justify	Percentage (%) of	50 %	10 %	
valuate the production and use of bottles made from soda-lime glass and nose made from HD poly(ethene). se the information given and your knowledge and understanding to justify	Evaluate the production and use of bottles made from soda-lime glass and those made from HD poly(ethene). Use the information given and your knowledge and understanding to justify		30 70	20 70	
nose made from HD poly(ethene). se the information given and your knowledge and understanding to justif	those made from HD poly(ethene). Use the information given and your knowledge and understanding to justif	used in new bottles			
		Evaluate the production those made from HD public the information gives	oly(ethene). ven and your knowled	-	
(Total 9				(То	 tal 9

Because it does not react with water.	
Because it is a good conductor of	
electricity.	

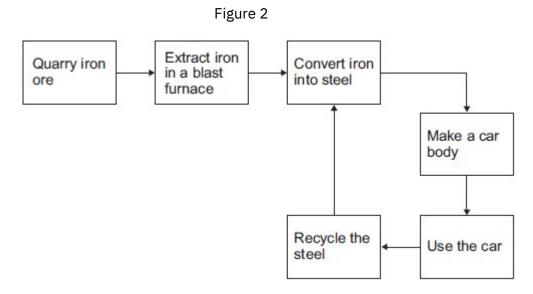
(1)

(b) Figure 1 shows the percentage (%) by mass of some metals in the Earth's crust.

Figure 1

(i) What is the percentage by mass of magnesium in the Earth's crust?

(1)


- On Figure 1 draw the bars for: (ii)
 - calcium at 3.6% by mass iron at 5.0% by mass.

(2)

An ore of zinc contains zinc carbonate. (c)

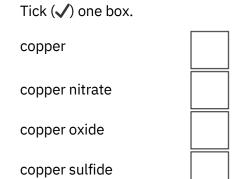
The equation for the reaction when zinc carbonate is heated is:

(i)	What is the name o	of this type of reaction?
	Tick (√) one box.	
	corrosion	
	decomposition	
	electrolysis	
(ii)	Which substance ir °C)?	n the equation is a gas at room temperature (20
	Tick (√) one box.	
	zinc carbonate	
	zinc oxide	
	carbon dioxide	
(iii)		below to show the number of atoms of carbon an ula of zinc carbonate.
	Element	Number of atoms in the formula ZnCO3
	zinc, Zn	1
	carbon, C	
	oxygen, O	
(iv)	When 125 g zinc c	arbonate is heated, 81 g zinc oxide is produced.
	Calculate the mass	s of carbon dioxide produced.

> (3) (Total 13 marks)

Q10.

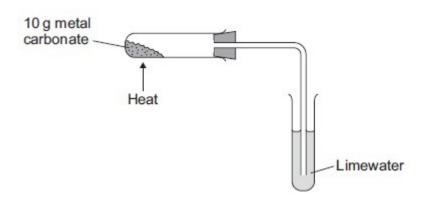
Metals are extracted from ores in the Earth's crust.


Some ores contain metal carbonates and some ores contain metal oxides.

(a)	(i)	Name the type of reaction that happens when a metal carbonate is
		heated.

(1)

(ii) Which solid product is formed when copper carbonate is heated?



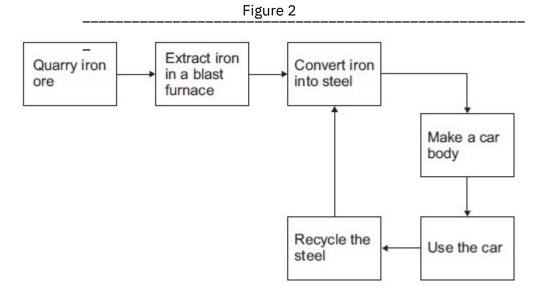
(1)

(b) A student investigated heating four metal carbonates.

Figure 1 shows the apparatus used.

Figure 1

The student heated each metal carbonate for five minutes.


The table below shows the results.

Metal carbonate	Mass of metal carbonate at start in g	Mass of solid after heating for 5 minutes in g	Observations
Copper carbonate	10.0	6.9	Limewater turns cloudy
Magnesium carbonate	10.0	9.1	Limewater turns cloudy

Potassium carbonate	10.0	10.0	Limewater does not turn cloudy
Zinc carbonate	10.0	8.3	Limewater turns cloudy

	Explain the results for potassium carbonate.
-	
_	
-	
-	
-	
-	
	Suggest how the reactivity series can be used to predict which metal carbonate reacts most easily when heated.
	Suggest how the reactivity series can be used to predict which metal carbonate reacts most easily when heated.

(c) F

Con	nplete the sentence.			
Iror	n ores must contain enough iron to			
Son	Some iron ores contain iron oxide (Fe2O3).			
	nplete and balance the equation for a reaction to produce iron n iron oxide.			
	Fe2O3 +C \rightarrow +CO2			
	e two reasons why iron produced in a blast furnace is converted steel.			
Wh	en a car reaches the end of its useful life, the car body can be:			
•	recycled			
•	reused			
•	sent to landfill.			
	e three reasons why a steel car body should be recycled and not sed or sent to landfill.			