Mark schemes

Q1.				
	(a)	disposal at the end of useful life	1	
	(b)	heating in a furnace	1	
		shaping wet clay	1	
	(c)	polymers	1	
		propene allow (a) monomer	1	
	(d)	cracking	1	
		fractional distillation	1	
	(e)	covalent	1	
	(f)	thermosetting	1	
	(g)	polymer A has crosslinks (between polymer molecules) or		
		polymer B has no crosslinks (between polymer molecules)	1	[10]

Q2.

(a) any two from:

energy used in:

- extraction of raw materials
 processing raw materials
 - processing raw materials allow energy used to make food plate
 - materials
- manufacturing
- transportation
- cleaning non-disposable plates
- disposal
- recycling

(b)	Level 2: A judgement, strongly linked and logically supported by a sufficient range of correct reasons, is given.	3-4
	Level 1: Some logically linked reasons are given. There may also be a simple judgement.	1 2
	No relevant content	1-2 0
	Indicative content	
	Raw materialsTrees are renewableCrude oil and clay are finite	
	 Manufacturing and packaging Paper plates use the least packaging so conserve raw materials Paper plates need less transportation overall as more plates in a 10 dm3 cardboard box 	
	 Use and operation Paper plates are single use so must be replaced most often Ceramic plates last longer than polymer plates so must be replaced less often 	
	 Disposal Polymer / ceramic plates take up landfill which is running out Paper / polymer plates can be used to make new products Recycling conserves raw materials 	
	Reasoned judgement	
(c)	(wet) clay is shaped	1
	(and) heated in a furnace allow (and) heated in a kiln / oven allow (and) fired	
		1
Q3. (a)	covalent	1
(b)	$-\mathbf{c} = \mathbf{c} -$	1
		1
(c)	composite	1

[8]

(d)	limestone	1
	sand	1
	either order	
(e)	ignore corrosion / erosion / rotting / rusting any two from: (makes the board) • strong • hard • tough • waterproof • durable • allow long lasting aesthetic reasons • rigid less friction • nigid protection • allow streamlined / smooth • protection • allow prevents damage	
(f)	(advantages of addition polymers)	2
(1)	low(er) cost allow cheap(er)	1
	low(er) density allow light(er)	1
	(disadvantages of addition polymers) weak(er) allow (more) likely to break	1
	hard(er) to dispose of ignore references to recycling or use as a fuel	1
(g)	an answer of 0.035 (m3) scores 3 marks. allow 2 marks for an answer of 0.105 (m3) (addition polymer) $150 = \frac{5.25}{\text{volume}}$	

1

	(volume =) $\frac{5.25}{150}$	1	
	(volume =) 0.035 (m3)	1	[14]
Q4.			
(a)	bar to 0.3 g	1	
	bar labelled copper allow Cu	1	
(b)	(£) 57 allow (£) 57.00	1	
(c)	$\frac{22}{9} \times 1.9$	1	
	= 4.6 (g) allow an answer of 4.6(4444) (g)	1	
	an answer of 4.6(4444) (g) scores 2 marks	-	
(d)	(9 carat gold is)		
	 any two from: harder allow stronger or more durable or less malleable less expensive allow cheaper aesthetic reasons allow references to colour allow converse arguments about 24 carat or pure gold ignore references to finite resources 	2	
(e)	any threefrom: • copper ores will run out <i>allow copper ores scarce</i>		
	landfill sites running out allow reduces waste		

allow reduces waste

less energy used

allow produces less carbon dioxide or an implication e.g. global warming

• mining causes pollution

allow a specific pollution resulting from mining, e.g. noise, eyesore, damage to environment

copper from copper ore more expensive
 allow recycled copper is cheaper

[10]

3

Q5.		
(a)	С ₆ H ₅ H С == С	
	н́н́	1
(b)	polymerisation	1
(c)	monomers	1
	many	1
	polymers	
	must be in this order	1
(d)	Level 2: Scientifically relevant features are identified; the way(s) in which they are similar / different is made clear and (where	
	appropriate) the magnitude of the similarity / difference is noted.	3-4
	Level 1: Relevant features are identified and differences noted.	1-2
	Level 1: Relevant features are identified and differences noted.	1-2
	No relevant content	0
	Indicative content	Ŭ
	for coated paper cups – accept converse for poly(styrene) advantages	

Q6.

	•	produced from a renewable resource biodegradable so breaks down		
	disa • •	dvantages higher energy costs greater use of fossil fuels and consequent pollution not recyclable so uses landfill		[9]
).				
(a)		l 3: A judgement, strongly linked and logically supported by a cient range of correct reasons, is given.	5-6	
		l 2: Some logically linked reasons are given. There may also be nple judgement.	2.4	
	Leve	el 1: Relevant points are made. They are not logically linked.	3-4	
	No r	elevant content	0	
	Indi	cative content		
	raw	materials		
	• • •	crude oil finite or will run out (so will be unavailable for other uses) wood is a renewable resource wood involves land use for forestry (so less available for agriculture / food) wood may involve deforestation (so reduces biodiversity)		
	mar	nufacturing		
	• • •	both require energy which may be derived from finite fuels (so they run out more quickly) paper more energy intensive (so more pollution is possible) the need for more energy for paper potentially releases more carbon dioxide to the atmosphere (so increases global warming) paper involves higher water usage (so increases the potential for water pollution) paper cups are heavier to transport (so have higher energy requirement) packaging requirements similar (so neither has an advantage)		
	usag	ge		

• both single-use (so neither has an advantage)

disposal

•	paper releases more energy if incinerated (so more energy can
	be used for other purposes)

- paper will decompose (so will not remain in landfill)
- poly(styrene) could release toxins on incineration
- poly(styrene) will not decompose (so will remain in landfill)
- poly(styrene) can be used to manufacture other products (so
- conserves energy or finite resources)
- both can cause litter or visual pollution

 $\frac{1000}{83}$ × 550 (kJ)

(b)

= 6.63 × 104 (kJ) allow 6.6265060240963 × 104 (kJ) correctly rounded allow 66265.060240963 (kJ) correctly rounded for 1 mark an answer of 6.63 × 104 (kJ) scores 2 marks

(c) (melamine is a) thermosetting (polymer)

(which) contains crosslinks / bonds (between polymer chains)

do not accept reference to intermolecular forces allow (so) it decomposes

[10]

1

1

1

1

Q7.

 Level 2 (3-4 marks): A judgement, strongly linked and logically supported by a sufficient range of correct reasons, is given. Level 1 (1-2 marks):

Relevant points are made. These are not logically linked. Level O

No relevant content.

Indicative content

raw material

- wood will not run out
- aluminium (ore) will run out
- more expensive to process aluminium from its raw material

mass of frame

- wooden frame more expensive to transport
- wooden frame uses more fuel to transport

	• wooden frame more difficult to handle / erect		
	useful lifetime wooden greenhouse would need replacing more often fewer aluminium greenhouses needed over time 		
	 end of useful life both materials can be put to further use aluminium can be recycled repeatedly 	4	
	12000	4	
(b)	80	1	
	= 150	1	
(c)	an answer of 150 scores 2 marks any twofrom:	1	
	conserves finite ores <i>allow ores will last longer</i>		
	uses less energy		
	lower energy costs		
	reduces landfill <i>allow less waste</i>	2	
(d)	(polymer windows are) lighter	2	
(u)	(polymer windows are) lighter	1	[9]
Q8.			
-			

(a) all points correct

±1 small square allow 1 mark for 6 or 7 plots

Year	Percentage (%) of bottles made from other materials
1975	5
1980	10
1985	22
1990	42
1995	70
2000	72
2005	90
2010	95

1

2

(b) Level 3 (5–6 marks): A detailed and coherent argument is provided which considers a range of issues and comes to a conclusion consistent with the reasoning. Level 2 (3–4 marks): An attempt to describe the advantages and disadvantages of the production and uses is made, which comes to a conclusion. The logic may be inconsistent at times but builds towards a coherent argument. Level 1 (1–2 marks): Simple statements made. The logic may be unclear and the conclusion, if present, may not be consistent with the reasoning.

0 marks:

No relevant content. Indicative content

- glass 2 stages in production of soda-lime glass glass -
- second stage, heating sand, limestone and sodium carbonate
- HDPE 3 stages in production HDPE second stage,
- cracking of naphtha to obtain ethene HDPE third stage,
- polymerisation of ethene fewer stages in glass production,
- may be quicker higher temperature in glass manufacture,
- therefore maybe higher energy requirement glass bottle can be reused consideration of collection / cleaning costs to
- reuse glass bottles other glass products can be made from
- recycled glass plastic has greater range of sizes both
- produced from limited raw materials higher percentage
- recycled materials in glass conserves raw materials

This indicative content is not exhaustive, other creditworthy responses should be awarded marks as appropriate.

[9]

6

Q9. (a) because it is a good conductor of electricity. 1 (b) (i) 2.1 (%) 1 (ii) correct bar for calcium at 3.6 % 1 allow error of +/- 0.05% correct bar for iron at 5.0 % 1 allow error of +/- 0.05%

(c)	(i)	decomposition		
(0)	(1)		1	
	(ii)	carbon dioxide		
	()		1	
	(iii)	carbon = 1 allow one		
			1	
		oxygen = 3 allow three		
			1	
	(iv)	44 (g)		
		allow forty four	1	
(d)	(i)	to make alloys for specific uses.		
(u)	(1)		1	
	(ii)	any three from:		
		to conserve resources of iron or iron ore allow steel instead of iron or iron ore		
		 allow limited resource or non-renewable to avoid the need for quarrying/mining 		
		 to conserve energy resources or fossil fuels 		
		 to limit the amount of carbon dioxide produced or to reduce global warming 		
		to reduce the amount of landfill "it" = steel		
		ignore cost and reuse and time and waste		
			3	
				[13]
Q10.				
(a)	(i)	(thermal) decomposition		
		allow decomposes or endothermic	1	
	(::)		I	
	(ii)	copper oxide	1	
(b)	(i)	the (potassium) carbonate did not decompose/change/react (when heated)		
		allow temperature not high enough		
		do not allow potassium did not decompose ignore references to reactivity		
		ishore rejerences to reactivity	1	
		the mass did not change or the limewater did not go cloudy		
			1	
		because no carbon dioxide produced	1	

	(ii)	the less reactive the metal the more (easily) its carbonate will decompose/react or vice versa		
		needs to be a relative comparison	2	
		allow max 1 mark where the distinction between a metal and its carbonate is not clear allow 1 mark for carbonates of reactive metals do not decompose or vice versa	L	
(c)	(i)	make it economical (to extract the metal/iron) allow make it worth extracting allow so they can make money/profit	1	
	(ii)	Fe	•	
	(1)	balanced correctly (2,3,4,3) not ecf	1	
		allow correct balanced equation but with 2Fe2 on right for one mark	1	
	(iii)	iron from the blast furnace is brittle		
		steel produced is strong / flexible	1	
		allow steel has more/specific uses allow steel is rust-resistant "it" = iron	1	
	(iv)	(recycling) is used to conserve iron (ore) or energy or resources or minimise pollution or reduce the need to quarry		
		allow reverse arguments.	1	
		(not reuse) because of damage, paint removal, rusting/corrosion, metal fatigue/weaker	1	
		(not landfill) because sites have limited appear or less of hebitate	I	
		(not landfill) because sites have limited space or loss of habitats <i>allow to reduce the use of landfill</i>	1	[15]
				[-]