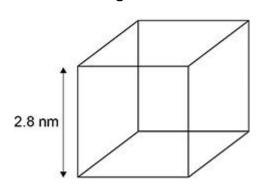

All questions are for both separate science and combined science students

Q1		question is about elements, compo	unds and mixtures.	
	(a)	Substance A contains only one type		
	,	Substance A does not conduct elec		
		Which type of substance is A?	·	
		Tick (√) one box.		
		Compound		
		Metallic element		
		Mixture		
		Non-metallic element		
				(1)
	(b)	Substance B contains two types of	atoms.	
		The atoms are chemically combine	ed together in fixed proportions.	
		Which type of substance is B?		
		Tick (√) one box.		
		Compound		
		Metallic element		
		Mixture		
		Non-metallic element		
				(1)
	(c)	What is the name of the elements i	in Group 0 of the periodic table?	
		Tick (√) one box.		

	Alkali metals	
	Halogens	
	Noble gases	
	Transition metals	(1)
(d)	Which statement about the elements in Group 0 is correct?	(1)
	Tick (√) one box.	
	All elements in the group are very reactive. All elements in the group form negative ions. The boiling points increase down the group. The relative atomic masses (Ar) decrease down the group.	(1)
(e)	Neon is in Group 0.	
	What type of particles are in a sample of neon?	
	Tick (✓) one box.	
	Atoms	
	lons	
	Molecules	(1)
(f)	Figure 1 represents part of the structure of an oxide of a meta	

Figure 1


Determine the empirical formula of this oxide.

Empirical formula XO____ (1)

A nanoparticle of a metallic element is a cube.

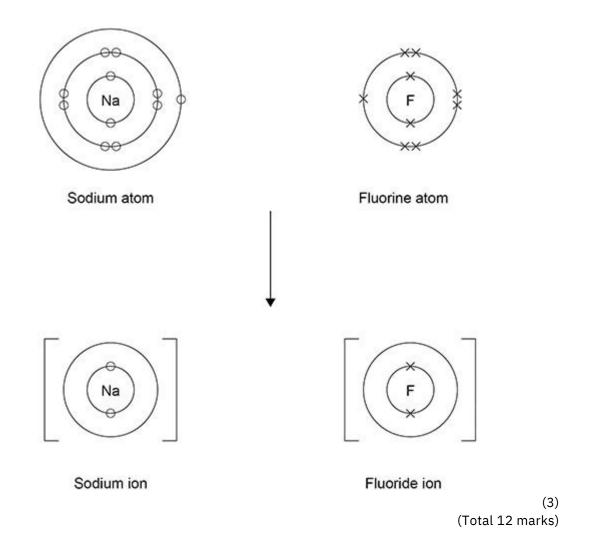
Figure 2 shows a diagram of the nanoparticle.

Figure 2

(g) The surface area of a cube is given by the equation:

surface area = (length of side) 2×6

Calculate the surface area of the cube in Figure 2. Give your answer


to	2	significant	figures.

	(Surface area (2 significa	nt figures) =	nm2 (3)
(h)	Fine and coar	se particles of the metal	lic element are also cu	
(.,,	The length of coarse particle How does the	a fine particle cube is 10 e cube. surface area to volume that of the coarse parti	times smaller than the	e length of a
		area to volume ratios ar rea to volume ratio of th	<u> </u>	
	10 times grea	ter. rea to volume ratio of th	8	
			(*	(1) Total 10 marks)
Q2. This	•	out Group 1 elements. le 1 to show the electron	nic structure of a potas	sium atom.
	A + a ma	Table 1	Flacture is atmost and]
	Atom Sodium	Number of electrons	Electronic structure 2,8,1	
	Potassium	19	2,0,1	
(b)		o 1 elements have simila	r chemical properties?	(1)
	electron shell They have the shell electron	e same number of ls. e same number of oute		

		(1)
(c)	What is th	ne type of bonding in sodium?
	Tick (√) o	ne box.
	Covalent	
	Ionic	
	Metallic	
		(1)
	le 2 shows n water.	observations made when lithium, potassium and rubidium reac
		Table 2
Ele	ment	Observations
Litl	nium	Bubbles slowly Floats Moves slowly
Sodium		1
Po	tassium	Bubbles very quickly Melts into a ball Floats Moves very quickly Flame
Ru	bidium	Sinks Melts into a ball Explodes with a flame
(d)	Give two	observations you could make when sodium reacts with water.
,		ur answers in Table 2.
	vviice you	(2)
(e)	How does	s the reactivity of the elements change going down Group 1?

(1)

(f)	Give two ways in which the observations in Table 2 show the char reactivity going down Group 1.	nge in
	1	
	2	
		(2)
(g)	Which gas is produced when Group 1 elements react with water	?
	Tick (√) one box.	
	Carbon dioxide	
	Hydrogen	
	Nitrogen	
	Oxygen	
		(1)
(h)	Sodium fluoride is an ionic compound.	
	The diagram below shows dot and cross diagrams for a sodium a fluorine atom.	
	Complete the diagram below to show what happens when a sociand a fluorine atom react to produce sodium fluoride. You should:	dium atom
	 complete the electronic structures of the sodium ion and t ion 	he fluoride
	aive the charges on the sodium ion and the fluoride ion	

Q3.

This question is about atomic structure and the periodic table.

Gallium (Ga) is an element that has two isotopes.

(a) Give the meaning of 'isotopes'. You should answer in terms of subatomic particles.

(2)

(b) The table below shows the mass numbers and percentage abundances of the isotopes of gallium.

Mass	Percentage abundance
1 1433	i ci centage abandance

number	(%)
69	60
71	40

	Calculate the relative atomic mass (Ar) of gallium.	
	Give your answer to 1 decimal place.	
	Relative atomic mass (1 decimal place) =	(2)
Gall	lium (Ga) is in Group 3 of the modern periodic table.	
(c)	Give the numbers of electrons and neutrons in an atom of the isotope	i.
	Number of electrons	
	Number of neutrons	(2)
(d)	What is the most likely formula of a gallium ion?	
	Tick (√) one box.	
	Ga+	
	Ga-	
	Ga ³⁺	
	Ga ³ -	
		(1)
(e)	Gallium was discovered six years after Mendeleev published his period table.	oik

Page 8 of 36

periodic table to become accepted.

Give two reasons why the discovery of gallium helped Mendeleev's

		1		
		2		
			(Total 9 ma	(2) rks)
Q4		question is about Group 1 elements.		
	(a)	Give two observations you could make when a small piece added to water. 1	of potassiu	m is
		2		
				(2)
	(b)	Complete the equation for the reaction of potassium with v	vater.	
		You should balance the equation.		
		K + H2O → +		(2)
	(c)	Explain why the reactivity of elements changes going down	n Group 1.	
				(4)

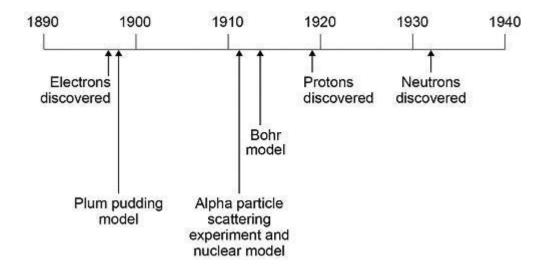
Sodium reacts with oxygen to produce the ionic compound sodium oxide.

Q5.

of the model of the atom.

Oxygen is a Group 6 element.

(d) Draw a dot and cross diagram to show what happens when atoms of sodium and oxygen react to produce sodium oxide.


Diagram

(e)	Why is oxygen described as being reduced in the reaction and oxygen?	on between sodium —
(f)	Explain why sodium oxide has a high melting point.	(1)
(.)		
		(3)

(4)

The diagram below shows a timeline of some important steps in the development

This question is about the development of scientific theories.

(a)	The plum pudding model did not have a nucleus. Describe three
	other differences between the nuclear model of the atom and the plum pudding model.

2	
3	

(3)

(b) Niels Bohr adapted the nuclear model.

De	scribe	the	change	that	Bohr	made	to	the	nuclear	model.

(2)

(c) Mendeleev published his periodic table in 1869.

	Mendeleev arranged the elements in order of atomic	weight.
	Mendeleev then reversed the order of some pairs of eler	nents. A
	student suggested Mendeleev's reason for reversing the o	rder was
	to arrange the elements in order of atomic number. Explain why the student's suggestion cannot be correct.	
	Use the diagram above.	
		(2)
(d)	Give the correct reason why Mendeleev reversed the order of elements.	of some pairs
		(1)
		(Total 8 marks)

Q6.

This question is about the elements in Group 7 of the periodic table.

Table 1 shows the melting points and boiling points of some of the elements.

Table 1

Element	Melting point in °C E	oiling point in °C
Fluorin	-220	-188
е	-101	-35
Chlorin	-7	59

e (a) What is the state of bromine at 100 °C? Bromin

Use Table 1.

е

Tick (√) one box.

	(A) (C)
Gas	
	8 6

	Liquid		
	Solid		
(b)	What temperature does chlo	(1 orine gas condense at to form a liquid?	.)
(2)	Use Table 1.	simio gas comaches at to form a liquid.	
	Temperature =	°C (1	`
(c)	Complete the sentences.	(1	.)
(C)	·	elting points	
	•	e molecules increases so the intermolecular	
	forces		
	<u> </u>	(2	!)
A te	eacher investigated the reaction	on of iron with chlorine.	
The	diagram below shows the ap	paratus used.	
		Iron	
Chl	lorine gas in →	Excess chlorine gas out Heat Glass tube	
(d)	Why did the teacher do the	investigation in a fume cupboard?	
	Tick (√) one box.		
	Chlorine gas is coloured.		
	Chlorine gas is flammable.		
	Chlorine gas is toxic.		
		(1	.)
(e)	The word equation for the re	eaction is:	

Page 13 of 36

iron + chlorine → iron chloride

Iron chloride is a solid.

The teacher weighed the glass tube and contents:

- before the reaction
- after the reaction.

What happened to the mass of the glass tube and contents during the reaction?

Give one reason for your answer.

The mass of the glass tube and contents _____

Reason _____

(2)

The teacher repeated the investigation with bromine gas and with iodine gas.

Table 2 shows the results.

Table 2

Element	Observation	
Chlorine	Iron burns vigorously with an orange gl	ow
Bromine	Iron burns with an orange glow	
lodine	Iron slowly turns darker	

(f) Fluorine is above chlorine in Group 7.

Predict what you would observe when fluorine gas reacts with iron.

Use Table 2.

(g) Balance the equation for the reaction between iron and bromine.

(1)

(1)

(h) Calculate the relative formula mass (Mr) of FeBr3

Relative atomic masses (Ar): Fe = 56 Br = 80

	Relativ	e formula mass (Mr)	=
			(Total 11 m
Q7.	in also and the closely and a		
	is about the halogens. the melting points an		me halogens
Table I SHOWS		a politing polities of sor	rie rialogeris.
	Table 1		
Element	Melting point in °C	Boiling point in °C	
Fluorin	-220	-188	
е	-101	-35	
Chlorin	-7	59	
Bromin Tick (√) o e	e state of bromine at 0 one box. e at 0 °C State at		
C	Gas Ga	s	
C	Gas Liqu	uid	
Li	iquid Ga	S	
Li	iquid Liqu	uid	
	Solid Ga	ς Π	
S	John Gu		

A teacher investigated the re	action of iron	with chlorine u	using the ap
in the above diagram.	2200110111011		**************************************
The word equation for the re	eaction is:		
iron + chlo	rine → iron chlo	oride	
The teacher weighed:			
· the glass tube			
• the glass tube and iron			
 the glass tube and iron 	ı chloride after	the reaction.	
Table 2 shows the teacher's	results.		
Table 2			
	Mass in g]	
Glass tube	51.56		
Glass tube and iron	56.04	1	
Glass tube and iron chloride	64.56	1	
Calculate the simplest whole	e number ratio	o of:	
moles of iron ator	ms : moles of c	:hlorine atoms	
Determine the balanced equ	uation for the	reaction.	
Relative atomic masses (Ar):	Cl = 35.5	Fe = 56	
,			
			Moles of

Q8.

This question is about the periodic table.

In the 19th century, some scientists tried to classify the elements by arranging them in order of their atomic weights.

The figure below shows the periodic table Mendeleev produced in 1869.

His periodic table was more widely accepted than previous versions.

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Period 1	н						
Period 2	Li	Ве	В	С	N	0	F
Period 3	Na	Mg	Al	Si	Р	s	Cl
Period 4	K Cu	Ca Zn	*	Ti *	V As	Cr Se	Mn Br
Period 5	Rb Ag	Sr Cd	Y In	Zr Sn	Nb Sb	Mo Te	*

(a)	The atomic weight of tellurium (Te) is 128 and that of iodine (I) is 127 Why did Mendeleev reverse the order of these two elements?	
(b)	Mendeleev left spaces marked with an asterisk *	(1)
	He left these spaces because he thought missing elements belonged there. Why did Mendeleev's periodic table become more widely accepted the previous versions?	an

		(3)
(c)	Mendeleev arranged the elements in order of their atomic weight.	
	What is the modern name for atomic weight?	
	Tick (√) one box.	
	Atomic number	
	Mass number	
	Relative atomic mass	
	Relative formula mass	
		(1)
(d)	Complete the sentence.	
	In the modern periodic table, the elements are arranged in order of	
		(4)
CI- I		(1)
	orine, iodine and astatine are in Group 7 of the modern periodic table.	
(e)	Astatine (At) is below iodine in Group 7.	
	Predict:	
	the formula of an astatine moleculethe state of astatine at room temperature.	
	Formula of astatine molecule	
	State at room temperature	
		(2)
(f)	Sodium is in Group 1 of the modern periodic table.	
	Describe what you would see when sodium reacts with chlorine.	
		(2)
		(~)

(Total 10 marks)

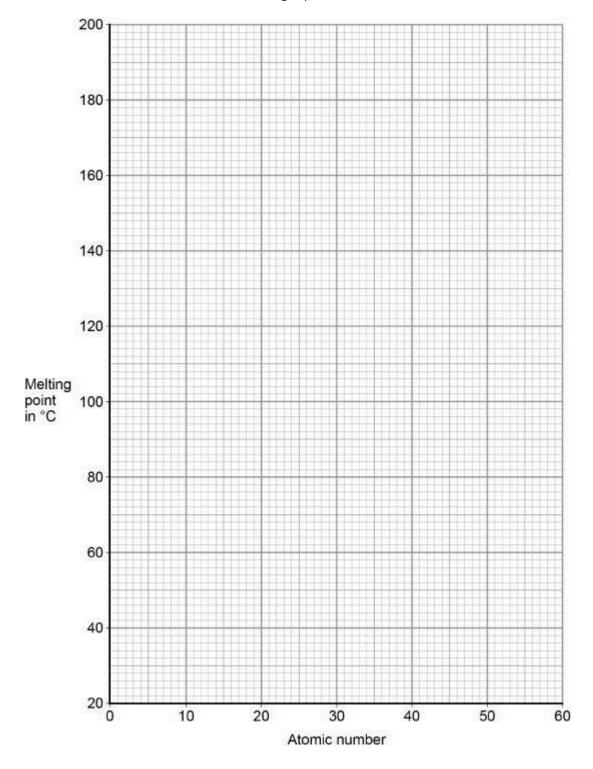
Q9.			
	The	halogens are elements in Group 7.	
	(a)	Bromine is in Group 7.	
		Give the number of electrons in the outer shell of a bromine atom.	
		(1	.)
	(b)	Bromine reacts with hydrogen. The gas hydrogen bromide is produced.	
		What is the structure of hydrogen bromide?	
		Tick one box.	
		Giant covalent	
		Ionic lattice	
		Metallic structure	
		Small molecule	
		(1	.)
	(c)	What is the formula for fluorine gas?	
		Tick one box.	
		F	
		F ₂	
		F ²	
		2F	
		(1	_)

A student mixes solutions of halogens with solutions of their salts.

The table below shows the student's observations.

	Potassium	Potassium	Potassium
	chloride	bromide	iodide
	(colourless)	(colourless)	(colourless)
Chlorine		Solution turns	Solution turns
(colourless)		orange	brown
Bromine (orange)	No change		Solution turns brown
Iodine (brown)	No change	No change	

(d)	Explain	how the	reactivity of	the halog	ens char	nges going d	down Group 7.
	Use	the	results	in	the	table	above.
							-
							_
							_
							_
							_
							(3)
A cc	mpany u	uses chlo	rine to produ	uce titaniu	ım chlor	ide from tita	nium dioxide.
(e) V	Vhat is th	ne relative	e formula m	ass (Mr) o	ftitaniun	n dioxide, Ti	O2?
	Relative	atomic	masses (Ar):	O = 16	Ti = 48		
	Tick one	e box.					
	64						
	80						
	128						
	768						
							(1)


(f) The company calculates that 500 g of titanium dioxide should produce 1.2 kg of titanium chloride.

		However, the company finds that 500 g of titanium dioxider produces 900 g of titanium chloride.	e only
		Calculate the percentage yield.	
		Percentage yield =	%
		(7	otal 9 marks)
Q1		s question is about elements in Group 1.	
		eacher burns sodium in oxygen.	
	(a)	Complete the word equation for the reaction.	
		sodium + oxygen →	(-)
	(b)	What is the name of this type of reaction?	(1)
		Tick one box.	
		Decomposition	
		Electrolysis	
		Oxidation	
		Precipitation	
	(c)	The teacher dissolves the product of the reaction in water and universal indicator.	(1) I adds
		The universal indicator turns purple.	
		What is the pH value of the solution?	
		Tick one box.	

	1 7 13	(1)
(d)	The solution contains a substance with the formula NaOH	(1)
	Give the name of the substance.	
(e)	All alkalis contain the same ion.	(1)
	What is the formula of this ion?	
	Tick one box.	
	H ⁺	
	Na+	
	OH-	
	O ²⁻	
		(1)
(f)	A solution of NaOH had a concentration of 40 g/dm3 What mass of NaOH would there be in 250 cm3 of the solution?	
	g	(2)
(g)	The melting points of the elements in Group 1 show a trend.	
	The table below shows the atomic numbers and melting points of the Group 1 elements.	
	Element Atomic Melting point in °C	

Lithium	3	181
Sodium	11	98
Potassium	19	63
Rubidium	37	Х
Caesium	55	29

Plot the data from the table on the graph below.

(2) (h) Predict the melting poixtof rubidium, atomic number 37 Use the graph above. Melting point = _____°C (1) (Total 10 marks) Q11. This question is about metals and metal compounds. Iron pyrites is an ionic compound. (a) The diagram below shows a structure for iron pyrites. Determine the formula of iron pyrites. Use the diagram above. (1)(b) An atom of iron is represented as Fe Give the number of protons, neutrons and electrons in this atom of iron. Number of protons Number of neutrons _____ Number of electrons (3) (c) Iron is a transition metal. Sodium is a Group 1 metal. Give two differences between the properties of iron and sodium.

		2.	
		_	
Nicl	valic overacted from pickal axida by raduction with carbon	(2)	
(d)	kel is extracted from nickel oxide by reduction with carbon. Explain why carbon can be used to extract nickel from nic	kel ovide	
(G)		Ref Oxide.	
		_	
		_	
		-	
(e)	An equation for the reaction is:	(2)	
(C)	NiO + C → Ni + CO		
	Calculate the percentage atom economy for the reaction t	o produce nick	اڃ
	Relative atomic masses (Ar): C = 12 Relative 9 ormula mass		
	= 75 Give your answer to 3 significant	figures.	
		_	
		_	
		_	
		_	
		_	
		_	
	Percentage atom economy =	%	
		(3) (Total 11 marks)	
		(TOTAL TT IIIAIKS)	

Q12.

This question is about Group 7 elements.

Chlorine is more reactive than iodine.

(a) Name the products formed when chlorine solution reacts with potassium

iodide					solution.
Explain why chlo	orine is more	e reacti	ive than iodir	ne.	
					_
Explain why hy					
Explain why hy	drogen chl	oride	is a gas at	room te	mperature.
Explain why hy	drogen chl	oride	is a gas at	room te	mperature.
Explain why hy	drogen chl	oride	is a gas at	room te	mperature.
Chlorine reacts v Explain why hy Answer in	drogen chl	oride	is a gas at	room te	mperature.

(d) Bromine reacts with methane in sunlight.

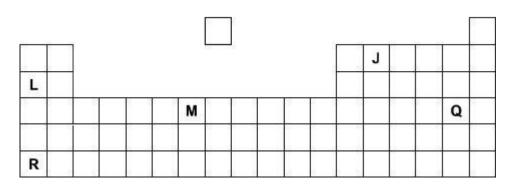
The diagram below shows the displayed formulae for the reaction of bromine with methane.

The table below shows the bond energies and the overall energy change in the reaction.

	С—Н	Br—Br	C—Br	H—Br	Overall energy change
Energy in kJ/mol	412	193	Х	366	-51

Calculate the bond energy X for the C—Br bond. Use the diagram and the table above.

Bond energy X = _____kJ/mol


(4)

(Total 11 marks)

Q13.

Figure 1 shows an outline of the modern periodic table.

Figure 1

- J, L, M, Q and R represent elements in the periodic table.
- (a) Which element has four electrons in its outer shell?

Tick (✓)one box.

J		L		М		Q		R	
---	--	---	--	---	--	---	--	---	--

	(1)
Which two elements in Figure 1 are in the same period?	
and	
	(1)
Tick (✓)one box.	
J L M Q R	(1)
Which element forms ions with different charges?	
Tick (✓)one box.	
J L M Q R	(1)
Which element has three electron shells?	
Tick (√)one box.	
J L M Q R	(1)
In the 1860s scientists were trying to organise elements.	
Figure 2 shows the table published by John Newlands in 1865. The elements are arranged in order of their atomic weights.	
Figure 2	
	Which element reacts with potassium to form an ionic compound? Tick (✓) one box. J

Н	Li	Ве	В	С	N	0
F	Na	Mg	Al	Si	Р	S
Cl	K	Ca	Cr	Ti	Mn	Fe
Co,Ni	Cu	Zn	Υ	In	As	Se
Br	Rb	Sr	Ce,La	Zr	Di,Mo	Ro,Ru
Pd	Ag	Cd	U	Sn	Sb	Te

Figure 3 shows the periodic table published by Dmitri Mendeleev in 1869.

Figure 3

3)	Н		1				8		7		8			8
Li Na		Е	Be .		В	С		N		10	0		F	
		Mg		AI		Si		Р		s		CI		
K	Cu	Ca	Zn	?	?	Ti	?	٧	As	Cr	Se	Mn	Br	Fe Co Ni
Rb	Ag	Sr	Cd	Υ	In	Zr	Sn	Nb	Sb	Мо	Te	?	1	Ru Rh Pd

Mendeleev's table became accepted by other scientists whereas Newlands' table was not.

Evaluate Newlands' and Mendeleev's tables.

You should include:

- · a comparison of the tables
- · reasons why Mendeleev's table was more acceptable.

Use Figure 2 and Figure 3 and your own knowledge.

(6) (Total 11 marks)

Q14.

This question is about halogens and their compounds.

The table below shows the boiling points and properties of some of the elements in Group 7 of the periodic table.

Element	Boiling point in °C	Colour in aqueous solution
Fluorin	-188	colourless
е	-35	pale green
Chlorin	X	orange
е	184	brown

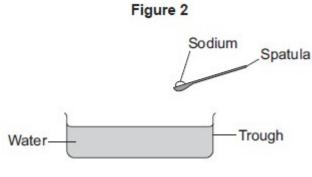
Bromin

(a) Why does iodine have a higher boiling point than chlorine? e lodine

Tick one box.

lodine is ionic and chlorine is covalent

	lodine is less reactive than chlorine	
	The covalent bonds between iodine atoms are stronger	
	The forces between iodine molecules are stronger	
		(1)
(b)	Predict the boiling point of bromine.	
		(1)
(c)	A redox reaction takes place when aqueous chlorine is added to pota iodide solution.	ssium
	The equation for this reaction is:	
	Cl2(aq) + 2KI(aq) → I2 (aq) + 2KCI(aq)	
	Look at table above.	
	What is the colour of the final solution in this reaction?	
	Tick one box.	
	Brown	
	Orange	
	Pale green	
	Colourless	
		(1)
(d)	What is the ionic equation for the reaction of chlorine with potassium iodide?	1
	Tick one box.	
	Cl2 + 2K → 2KCl	
	2I⁻ + CI2 → I2 + 2CI⁻	
	- + C → + C -	
	I- + K+ → KI	


						(1)
	(e)	Why do	es potassium	iodide solution co	anduct electricity	?
		Tick on	e box.			
		It conta	ains a metal			
		It conta	ains electrons \	which can move		
		It conta	ains ions which	n can move		
		It conta	ains water			
						(1)
	(f)	What ar	e the products	s of electrolysing p	ootassium iodide	solution?
		Tick on	e box.			
		Product	at cathode	Product at anode	;	
		hydrog	en	iodine		
		hydrog	en	oxygen		
		potassi	um	iodine		
		potassi	um	oxygen		
						(1)
						(Total 6 marks)
- 4	_					
Q1		question	n is about elem	ents and the peri	iodic table.	
	(a)	Use the	correct answe	ers from the box t	o complete the s	entences.
		atoms	atomic weigh	nts electrons	proton numb	ers
		Newlan	ds' and Mende	eleev's periodic ta	bles show the ele	ements in order of
		their				
		periodic		ry of protons and		
		table sh	ows the eleme	ents in order of th	eir	·

(3)

(b) Figure 1 shows the position of six elements in the modern periodic table.

								ı ıgu	ii e ii									
							Н											
Li																		
Na	8															e si		
K							Fe				-							
Rb									L									
	(i)		Whic	chone	e of t	thes	e six -	eler	ment	ts ha	s th	e lov	vest	boil	ing p	ooin —	t?	(1)
	(ii	١	Com	nlet	a the	SOF	tano	20										(1)
	(11	,	In the						dium	ı (Rb) is i	n Gr	oup				. •	(1)
	(ii	i) V	Vhich	of th	nese	thre	ee el	eme	ents	is the	e mo	ost re	eact	ive?				
			Tick	(/)	one	box.												
			Lithi	ium	(Li)													
			Sodi	ium	(Na)													
			Pota	assiu	m (ŀ	<)												(1)
	(iv	/)	Whi	ch t\	NO S	tater	men	ts ar	e co	rrec [.]	t?							(1)
			Tick	(\	two	boxe	es.											
			Iron pota			gher	den	sity	thar	1								
			Iron	is sc	fter	thar	n pot	assi	um.									
			Iron	reac	cts vi	gord	ously	wit!	h wa	iter.								
			Iron char			ns th	nat h	nave	diffe	eren	t 🗌							
												_						(2)

(c) Figure 2 shows sodium being put into water.

Describe three observations that can be seen when sodiu water. 1.	m is put into
	_
2.	
	_
3.	
	_
	(3) (Total 11 marks)
augstion is about alaments and the periodic table	

Q16.

This question is about elements and the periodic table.

- (a) Newlands and Mendeleev both produced early versions of the periodic table.
 - (i) Complete the sentence.

In their periodic tables, Newlands and Mendeleev arranged the elements in

order of ______.

(1)

(1)

(ii) Name the particle that allowed the elements to be arranged in order of their atomic number in the modern periodic table.

(b) The diagram below shows the position of nine elements in the modern periodic table.

Li]															F		
Na													N N	2 2			CI		
K				8					5		Cu						Br		
Rb																	1		
	(i)					f the		e ele	mer	nts sł	now	n in	the	diag	ram	abo 	ve h	as the
																			(1)
	(1	i)	b	oilir	ng	poin	pota ts. (copp	Give	on	e o	ther	dif	nt n fere	nelti nce	ng bet	ooin :wee 	ts a en t	nd he	
																			(1)
	(1	ii) E	C	Grou	ıp 1 1	from	e rea	ium	to r	ubid	ium								
			_																
			_																
			_																
			_																
			_																
			_																
			_																
			_																

(4)

(Total 8 marks)