GCSE
 CHEMISTRY

Higher Tier Chemistry 2H

Specimen 2018

Materials

For this paper you must have:

- a ruler
- a calculator
- the periodic table (enclosed).

Instructions

- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers. •

When answering questions 03.3 and 04.2 you need to make sure that your answer:

- is clear, logical, sensibly structured
- fully meets the requirements of the question
- shows that each separate point or step supports the overall answer.

Advice

In all calculations, show clearly how you work out your answer.
Please write clearly, in block capitals.

Surname
Forename(s)

Candidate signature

0	$1 \quad$ This question is about organic compounds.

Hydrocarbons can be cracked to produce smaller molecules.
The equation shows the reaction for a hydrocarbon, C 18 H 38
$\mathrm{C} 18 \mathrm{H} 38 \rightarrow \mathrm{C} 6 \mathrm{H} 14+\mathrm{C} 4 \mathrm{H} 8+2 \mathrm{C} 3 \mathrm{H} 6+\mathrm{C} 2 \mathrm{H} 4$

Which product of the reaction shown is an alkane?

0	1	1

Tick one box.

C2H4
C3H6
C4H8 \square
C6H14 \square

Table 1 shows the boiling point, flammability and viscosity of C 18 H 38 compared with | 0 | 1 | 2 |
| :--- | :--- | :--- |

Table 1

	Boiling point Flammability	Viscosity	
A	highest	lowest	highest
B	highest	lowest	lowest
C	lowest	highest	highest
D	lowest	highest	lowest

Which letter, A, B, C or D, shows how the properties of C18H38 compare with the properties of $\mathrm{C} 2 \mathrm{H} 4, \mathrm{C} 3 \mathrm{H} 6, \mathrm{C} 4 \mathrm{H} 8$ and C 6 H 14 ?

Tick one box.
A
\square
B \square
C \square
D \square

| 0 | 1. |
| :--- | :--- | .3 The hydrocarbon C4H8 was burnt in air.

Incomplete combustion occurred.
Which equation, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D , correctly represents the incomplete combustion reaction?
$\mathrm{AC} 4 \mathrm{H} 8+4 \mathrm{O} \rightarrow 4 \mathrm{CO}+4 \mathrm{H} 2$
$\mathrm{BC} 4 \mathrm{H} 8+4 \mathrm{O} 2 \rightarrow 4 \mathrm{CO}+4 \mathrm{H} 2 \mathrm{O}$
$\mathrm{CC} 4 \mathrm{H} 8+6 \mathrm{O} 2 \rightarrow 4 \mathrm{CO} 2+4 \mathrm{H} 2 \mathrm{O}$
D C4H8 $+8 \mathrm{O} \rightarrow 4 \mathrm{CO} 2+4 \mathrm{H} 2$

Tick one box.

A \square
B \square

C \square
D \square

Question 1 continues on the next page

0	1.	4

Which structure, A, B, C or D, shows propanoic acid?

A

B

C

D

Tick one box.

0	1	5

Tick one box.

Propane \square
Propene \square
Propanol \square
Polyester \square

02 Water from a lake in the UK is used to produce drinking water.
$\square^{2} \cdot{ }^{1}$ What are the two main steps used to treat water from lakes?
Give a reason for each step.
[2 marks]

Step 1
Reason
Step 2
Reason
\square 02. 2 Explain why it is more difficult to produce drinking water from waste water than from water in lakes.

Question 2 continues on the next page

0	2	3

Complete Figure 1 to show how you can distil salt solution to produce and collect pure water.
Label the following:

- pure water
- salt solution.

Figure 1

| 0 | 2 |
| :--- | :--- | :--- | How could the water be tested to show it is pure?

Give the expected result of the test for pure water.

| 0 | 2 |
| :--- | :--- | .5 Why is producing drinking water from sea water expensive?

[1 mark]

Turn over for the next question

Figure 2 shows four test tubes a student set up to investigate the rusting of iron.
This is the method used for each test tube.

1. Measure the mass of the nail using a balance.
2. Leave the nail in the test tube for 6 days.
3. Measure the mass of the nail after 6 days.

Figure 2

Test tube 1

Test tube 3

Test tube 6

Table 2 shows the student's measurements.
Table 2

Test tube	Mass of nail in g	Mass of nail after 6 days in g
1	8.45	8.91
2	8.46	8.46
3	8.51	8.51
4	9.65	9.65
5	9.37	9.45
6	9.79	9.79

| 0 | 3 | 1 | What is the resolution of the balance the student used? |
| :--- | :--- | :--- | :--- | Tick one box.

$1 \times 10-3 \mathrm{~g}$ \square
$1 \times 10-2 \mathrm{~g}$
$1 \times 10-1 \mathrm{~g}$

$1 \times 102 \mathrm{~g}$ \square

Question 3 continues on the next page

| 0 | 3 | 2 | Calculate the difference in percentage increase in mass after 6 days of the nail in |
| :--- | :--- | :--- | :--- | test tube 1 and the nail in test tube 5 .

Give your answer to three significant figures.
[4 marks]

Difference in percentage increase in mass = \%

| 0 | 3 | 3 |
| :--- | :--- | :--- | affecting the rusting of iron. Include an evaluation of the effectiveness of different coatings at preventing the rusting of iron.

0	3	4

Complete the word equation for the reaction.
[2 marks]
\qquad $+$

0	4	Plastic and glass can be used to make milk bottles.

Figure 3 shows the percentage of milk bottles made from glass between 1975 and 2010.

Figure 3

Plot the points and draw a line on Figure 3 to show the percentage of milk bottles

0	4	1

[3 marks]

Question 4 continues on the next page

Table 3 gives information about milk bottles.
Table 3

	Glass milk bottle	Plastic milk bottle
Raw materials	Sand, limestone, salt	Crude oil
Bottle material	Soda-lime glass	HD poly(ethene)
Initial stage in production of bottle material	Limestone and salt used to produce sodium carbonate.	Production of naphtha fraction.
Maximum temperature in production process	$1600^{\circ} \mathrm{C}$	$850^{\circ} \mathrm{C}$
Number of times bottle can be used for milk Size(s) of bottte	25	1
Pereentage $(\%)$ of recycled material used in new bottles	50%	$0.5 \mathrm{dm3}, 1 \mathrm{dm3}, 2 \mathrm{dm} 3,3 \mathrm{dm} 3$

| 0 | 4. |
| :--- | :--- | Evaluate the production and use of bottles made from soda-lime glass and those made from HD poly(ethene).

Use the information given and your knowledge and understanding to justify your choice of material for milk bottles.

Turn over for the next question

This question is about the temperature of the Earth's atmosphere.

0	5

Give one reason why it is difficult to produce models for future climate change.
[1 mark]

0	5	2

Figure 4 shows the change in mean global air temperature from 1860 to 2000.

Figure 4

| 0 | 5 |
| :--- | :--- | :--- | Explain how human activities have contributed to the main trend shown from 1910 in Figure 4.

Turn over for the next question

0	6

| 0 | 6 | 1 | Draw the bonds to complete the displayed formulae of ethene and poly(ethene) in |
| :--- | :--- | :--- | :--- | the equation.

\qquad
6 2 Polyesters are made by a different method of polymerisation.

The equation for the reaction to produce a polyester can be represented as:

Compare the polymerisation reaction used to produce poly(ethene) with the polymerisation reaction used to produce a polyester.
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

A student investigated food dyes using paper chromatography.
This is the method used.

1. Put a spot of food colouring X on the start line.
2. Put spots of four separate dyes, A, B, C and D, on the start line.
3. Place the bottom of the paper in water and leave it for several minutes.

Figure 5 shows the apparatus the student used.

Figure 5

| 0 | 7. |
| :--- | :--- | what problems one of the mistakes would cause.

Question 7 continues on the next page

Another student set up the apparatus correctly.
Figure 6 shows the student's results. The result for dye
D is not shown.

Figure 6

0	7	2

Give your answer to two significant figures.

Rf value $=$
07.3 Dye D has an Rf value of 0.80 . Calculate the distance that dyeD moved on the chromatography paper.
[1 mark]

Distance moved by dye $D=$

[4 marks]

Question 7 continues on the next page

0	7	5
5	Flame emission spectroscopy can be used to analyse metal ions in solution.	

Figure 7 gives the flame emission spectra of five metal ions, and of a mixture of two metal ions.

Figure 7

[2 marks]

| 0 | 7 | 6 |
| :--- | :--- | :--- | mixture.

0	7

Two students tested a green compound X .
The students added water to compound X. Compound X did not dissolve.

The students then added a solution of ethanoic acid to compound X A gas was produced which turned limewater milky.

Student A concluded that compound X was sodium carbonate.
Student B concluded that compound X was copper chloride.

Which student, if any, was correct?
Explain your reasoning.

08 Fertilisers are used to improve agricultural productivity.

| 08.1 |
| :--- | :--- |\quad Ammonium nitrate is used in fertilisers.

Name the two compounds used to manufacture ammonium nitrate.

A fertiliser contains the following information on the label:

$$
\text { NPK value = } 14: 11: 11
$$

Explain why this information is useful to farmers.

| 0 | 8 | 3 | Figure 8 shows worldwide ammonia production and world population from |
| :--- | :--- | :--- | :--- | 1950 to 2010.

Figure 8

Use Figure 8 and your knowledge to explain the relationship between ammonia production and world population.
\qquad
\qquad
\qquad

There are no questions printed on this page

Marble chips are mainly calcium carbonate (CaCO3).
A student investigated the rate of reaction between marble chips and hydrochloric acid (HCl).
Figure 9 shows the apparatus the student used.

Figure 9

| 0 | 9 | 1 |
| :--- | :--- | :--- | hydrochloric acid.

$\rightarrow \quad \mathrm{CaCl} 2$ \qquad $+$ \qquad

Question 9 continues on the next page

0	9	2

Table 4

Time in s	Volume of gas in dm3
0	0.000
30	0.030
60	0.046
90	0.052
120	0.065
150	0.070
180	0.076
210	0.079
240	0.080
270	0.080

On Figure 10:

- Plot these results on the grid.
- Draw a line of best fit.

Figure 10

| 0 | 9 | 3 | 3 |
| :--- | :--- | :--- | :--- | experiment was repeated using 20 g of smaller marble chips. Label this line A.

[2 marks]

Question 9 continues on the next page

| 0 | 9.4 | 4 |
| :--- | :--- | :--- | reaction of calcium carbonate with hydrochloric acid.

Another student investigated the rate of reaction by measuring the change in mass. Sfigurs the graph plotted from this student's results.

Figure 11

| 0 | 9. |
| :--- | :--- | is complete.

Give your answer to three significant figures.

Mean rate of reaction $=\mathrm{g} / \mathrm{s}$

Use Figure 11 to determine the rate of reaction at 150 seconds.
Show your working on Figure 11.

| 0 | 9 |
| :--- | :--- | Give your answer in standard form.

[4 marks]

Rate of reaction at 150 s

In industry ethanol is produced by the reaction of ethene and steam at $300^{\circ} \mathrm{C}$ and 60 atmospheres pressure using a catalyst.
The equation for the reaction is:
$\mathrm{C} 2 \mathrm{H} 4(\mathrm{~g})+\mathrm{H} 2 \mathrm{O}(\mathrm{g}) \mathrm{C} 2 \mathrm{H} 5 \mathrm{OH}(\mathrm{g})$

Figure 12 shows a flow diagram of the process.

Figure 12

Why does the mixture from the separator contain ethanol and water?

1	0.

[1 mark]

| 1 | 0 | 2 |
| :--- | :--- | :--- | The forward reaction is exothermic.

Use Le Chatelier's Principle to predict the effect of increasing temperature on the amount of ethanol produced at equilibrium.
Give a reason for your prediction.
[2 marks]

| 1 | 0 | 3 |
| :--- | :--- | :--- | ethanol produced at equilibrium.

There are no questions printed on this page

Copyright information

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements in future papers if notified. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

[^0]
[^0]: Copyright © 2016 AQA and its licensors. All rights reserved.

