$A Q A=$

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature

GCSE

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
TOTAL	

- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

| $\mathbf{0}$ | 1 |
| :--- | :--- | This question is about copper wire and copper compounds.

Copper is used to make electrical wires.
Figure 1 shows how copper electrical wire is insulated using an addition polymer called poly(butene).

Figure 1

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{1}$ The addition polymer poly(butene) has the displayed structural formula:

Poly(butene) is produced from the monomer butene.

Complete Figure 2 to show the displayed structural formula of butene.

Figure 2

$\mathrm{CH}_{3} \mathrm{CH}_{3}$

C C

H H

Copper can be obtained by recycling scrap copper wire.

| $\mathbf{0}$ | $\mathbf{1} .2$ | Suggest why poly(butene) insulation must be removed from scrap copper wire before |
| :--- | :--- | :--- | the copper is recycled.

\qquad
\qquad

0	$\mathbf{1}$	3	Describe how scrap copper wire can be recycled to make new copper water pipes.

\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{1} .4$ | Suggest two reasons why recycling scrap copper is more sustainable than extracting |
| :--- | :--- | :--- | copper from copper ores.

1 \qquad
\qquad
2 \qquad
\qquad

Question 1 continues on the next page

Copper sulfate is a compound of copper.
Copper sulfate solution contains copper(II) ions and sulfate ions.

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{5}$ | A solution can be added to copper sulfate solution to show the presence of |
| :--- | :--- | :--- | :--- | copper(II) ions.

Name the solution added.
Give the result of the test.

Name of solution added \qquad
give tesult.
[2
\qquad
Result \qquad
\qquad

0	1	6	Describe one test to show the presence of sulfate ions in copper sulfate solution.

Give the result of the test.
[2 marks]
Test \qquad
\qquad
Result \qquad

| 0 | 2 |
| :--- | :--- | A student investigated the change in mass when hydrated cobalt chloride was heated.

The word equation for the reaction is:
hydrated cobalt chloride \rightleftharpoons anhydrous cobalt chloride + water

This is the method used.

1. Add 2.0 g of hydrated cobalt chloride to an empty test tube.
2. Measure the mass of the test tube and contents.
3. Heat the test tube and contents gently for 30 seconds.
4. Allow the test tube and contents to cool.
5. Measure the mass of the test tube and contents.
6. Repeat steps 3 to 5 until the mass of the test tube and contents does not change.

Table 1 shows the results.
Table 1

Total heating time in seconds	Mass of test tube and contents in grams
0	26.5
30	26.2
60	25.9
90	25.6
120	25.6

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{1}$ Determine the mass of the empty test tube.

\qquad
\qquad

Mass of empty test tube $=$

$\mathbf{0}$	$\mathbf{2} .2$	$\mathbf{2}$ Explain why the mass of the test tube and contents decreased.

\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{3}$	Suggest why the test tube and contents were heated until the mass did not change.

\qquad
\qquad

Question 2 continues on the next page

Energy is taken in from the surroundings when hydrated cobalt chloride is heated.

| $\mathbf{0}$ | $\mathbf{2} .4$ When 238 g of hydrated cobalt chloride is heated until the mass does not change, |
| :--- | :--- | :--- | 88.1 kJ of energy is taken in.

The student heated 2.00 g of hydrated cobalt chloride until the mass did not change.

Calculate the energy taken in during this reaction.
Give your answer to 3 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad

Energy taken in (3 significant figures) $=$ \qquad kJ

0	2	5	What type of reaction takes place when hydrated cobalt chloride is heated?

\qquad

$\mathbf{0}$	$\mathbf{3}$ This question is about life cycle assessments (LCAs).

$\mathbf{0}$	$\mathbf{3}$	$\mathbf{1}$

Table 2 shows information about milk bottles of equal volume.
Table 2

	Glass	Polymer
Raw materials	Limestone Sand Sodium carbonate	Crude oil
Energy needed to process raw materials in kilojoules	6750	1710
Energy needed to manufacture bottle in kilojoules	750	90
Mass of bottle in grams	200	20
Mean number of times used during lifetime of bottle	25	1
One disposal method at end of useful life	Recycled to make different glass products	Recycled to make different polymer products

Evaluate the use of glass for milk bottles compared with the use of a polymer for milk bottles.

Use features of life cycle assessments (LCAs) in your answer.
Use Table 2.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 4 |
| :--- | :--- | This question is about the fractions obtained from crude oil.

$\begin{array}{lll}\mathbf{0} & \mathbf{4} & \mathrm{l} \\ \mathbf{1} & \text { Crude oil is separated into fractions by fractional distillation. }\end{array}$
The fractions obtained from crude oil include:

- lubricating oil
- naphtha
- petroleum gases.

Table 3 shows the boiling point range of these fractions.

Table 3

Fraction	Boiling point range in ${ }^{\circ} \mathrm{C}$
Lubricating oil	$300-350$
Naphtha	$90-200$
Petroleum gases	<25

Explain how these fractions are obtained from crude oil by fractional distillation.
\qquad

| 0 | $\mathbf{4}$ | $\mathbf{2}$ Fractions from crude oil can be processed to produce feedstock for the |
| :--- | :--- | :--- | petrochemical industry.

Which two are useful materials produced from this feedstock?
Tick (\checkmark) two boxes.

Alloys

Ceramics

Detergents

Fertilisers

Solvents

Another fraction obtained from crude oil is petrol.

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{3}$ Petrol contains a hydrocarbon with the formula $\mathrm{C}_{9} \mathrm{H}_{20}$ |
| :--- | :--- | :--- | :--- |

Complete the equation for the complete combustion of $\mathrm{C}_{9} \mathrm{H}_{20}$
You should balance the equation.
$\mathrm{C}_{9} \mathrm{H}_{20}+\longrightarrow+$ \qquad

0	4	4	Petrol obtained from crude oil contains sulfur impurities.

Explain why sulfur impurities are removed before petrol is burned in car engines.
\qquad
\qquad
\qquad
\qquad

Table 4

Fraction	Range of number of carbon atoms in each molecule
Kerosene	$11-15$
Heavy fuel oil	$20-40$

A student predicted that heavy fuel oil is more viscous than kerosene.
The student's prediction was correct.

Justify the student's prediction.
\qquad
\qquad
\qquad
\qquad

The heavy fuel oil fraction can be processed to produce smaller hydrocarbon molecules.

0	4	6
	Name the process which produces smaller hydrocarbon molecules from heavy fuel oil.	

Name of process \qquad
Conditions \qquad
\qquad
\qquad

| 0 | 4 | 7 | $H y d r o c a r b o n ~ m o l e c u l e s ~ c o n t a i n i n g ~ s e v e n ~ a n d ~ e i g h t ~ c a r b o n ~ a t o m s ~ c a n ~ b e ~ p r o d u c e d ~$ |
| :--- | :--- | :--- | :--- | when heavy fuel oil is processed.

Which pair of hydrocarbon molecules would both turn bromine water colourless?
Tick (\checkmark) one box.
$\mathrm{C}_{7} \mathrm{H}_{14}$ and $\mathrm{C}_{8} \mathrm{H}_{16}$

$\mathrm{C}_{7} \mathrm{H}_{14}$ and $\mathrm{C}_{8} \mathrm{H}_{18}$

$\mathrm{C}_{7} \mathrm{H}_{16}$ and $\mathrm{C}_{8} \mathrm{H}_{16}$

$\mathrm{C}_{7} \mathrm{H}_{16}$ and $\mathrm{C}_{8} \mathrm{H}_{18}$

0	5

| 0 | 5 | 1 |
| :--- | :--- | :--- | Sewage is waste water.

Sewage contains organic matter.

Describe how sewage is treated to remove organic matter.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 5 continues on the next page

Sea water and ground water are treated to make them potable.
Table 5 shows information about the composition and treatment of sea water and of ground water.

Table 5

	Sea water	Ground water
Concentration of sodium ions and chloride ions before Process 1	$\mathrm{Na}^{+}: 0.5 \mathrm{~mol} / \mathrm{dm}^{3}$ $\mathrm{Cl}^{-}: 0.5 \mathrm{~mol} / \mathrm{dm}^{3}$	$\mathrm{Na}^{+}: 0.001 \mathrm{~mol} / \mathrm{dm}^{3}$ $\mathrm{Cl}^{-}: 0.001 \mathrm{~mol} / \mathrm{dm}^{3}$
Process 1	Reverse osmosis	Filtration
Concentration of sodium ions and chloride ions after Process 1	\mathbf{X}	$\mathrm{Na}^{+}: 0.001 \mathrm{~mol} / \mathrm{dm}^{3}$ $\mathrm{Cl}^{-}: 0.001 \mathrm{~mol} / \mathrm{dm}^{3}$
Process 2	Add ozone	Expose to ultraviolet light

0	5	2

Which pair of concentrations could represent \mathbf{X} in Table 5?
Tick (\checkmark) one box.
$\mathrm{Na}^{+}: 0.003 \mathrm{~mol} / \mathrm{dm}^{3} \quad \mathrm{Cl}^{-}: 0.003 \mathrm{~mol} / \mathrm{dm}^{3}$

Na^{+}: $0.003 \mathrm{~mol} / \mathrm{dm}^{3}$
Cl^{-}: $0.5 \mathrm{~mol} / \mathrm{dm}^{3}$

$\mathrm{Na}^{+}: 0.5 \mathrm{~mol} / \mathrm{dm}^{3}$
Cl^{-}: $0.003 \mathrm{~mol} / \mathrm{dm}^{3}$

$\mathrm{Na}^{+}: 0.5 \mathrm{~mol} / \mathrm{dm}^{3}$
$\mathrm{Cl}^{-}: 0.5 \mathrm{~mol} / \mathrm{dm}^{3}$

$\begin{array}{llll}0 & 5 & 3 & \text { Explain why the concentrations of sodium ions and of chloride ions in the ground }\end{array}$ water in Table 5 are unchanged by Process 1.
\qquad
\qquad
\qquad
\qquad

| 0 | 5 | 4 | Explain why the ground water in Table 5 requires Process 2 before the water is |
| :--- | :--- | :--- | :--- | safe to drink.

\qquad
\qquad
\qquad
\qquad
$\begin{array}{llll}0 & 5 & 5 & \text { After treatment the ground water in Table } 5 \text { is sold by a company as pure water. }\end{array}$
The ground water in Table 5 is not chemically pure because the water contains sodium ions and chloride ions.

Suggest what the company means by 'pure'.
\qquad
\qquad

$\mathbf{0}$	$\mathbf{5} .6$	6

Describe the test for chlorine gas.
Give the result of the test.

Test \qquad
\qquad
Result \qquad

| 0 | 6 |
| :--- | :--- | This question is about the chemistry of the Earth's atmosphere.

Figure 3 shows how the percentages of gases in the Earth's atmosphere may have changed since the atmosphere was formed.

Figure 3

$\begin{array}{llll}0 & 6 & 1 & \text { Explain the change in the percentage of gas in the region labelled } \mathbf{A} \text { on Figure } 3 .\end{array}$
\qquad
\qquad
\qquad
\qquad
 [2 marks]
\qquad
\qquad
\qquad
\qquad

| 0 | 6 | 3 |
| :--- | :--- | :--- | Figure 3.

\qquad
\qquad
\qquad
\qquad

| 0 | 6 | 4 |
| :--- | :--- | :--- | What process caused the changes in the percentages of gases in the region labelled C on Figure 3?

\qquad
\qquad

0	6	5	Natural gas is a fossil fuel.

Describe how deposits of natural gas were formed.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	$\mathbf{7}$	Ammonia is produced in the Haber process.

The raw materials for the Haber process are nitrogen and hydrogen.
The equation for the reaction is:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{1}$

Nitrogen \qquad
Hydrogen \qquad

| $\mathbf{0}$ | $\mathbf{7} .2$ | $\mathbf{2}$ How does the equation for the reaction show that the atom economy of the |
| :--- | :--- | :--- | forward reaction is 100% ?

\qquad
\qquad

0	$\mathbf{7}$	$\mathbf{3}$	Figure 4 represents the Haber process.

Figure 4

Explain how the ammonia produced is separated from the unreacted nitrogen and hydrogen in \mathbf{X}
\qquad
\qquad
\qquad
\qquad

Question 7 continues on the next page

The Haber process uses a temperature of $450^{\circ} \mathrm{C}$ and a pressure of 200 atmospheres.

Table 6 shows the percentage yield of ammonia produced at $450^{\circ} \mathrm{C}$ using different pressures.

Table 6

Pressure in atmospheres	Percentage (\%) yield of ammonia
60	9
120	18
180	25
240	31
300	36
360	43
420	

0	$\mathbf{7} .4$	Complete Figure 5.

The first two points have been plotted.
You should:

- use a suitable scale for the x-axis
- plot the remaining data from Table 6
- draw a line of best fit.

Figure 5

0	7	5

Show your working on Figure 5.

Percentage yield $=$ \%

0	$\mathbf{7}$	6	The equation for the production of ammonia in the Haber process is:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

The forward reaction is exothermic.
The conditions used are:

- a temperature of $450^{\circ} \mathrm{C}$
- a pressure of 200 atmospheres
- the presence of an iron catalyst.

Explain why these conditions are chosen for economical production of ammonia in the Haber process.

You should include references to the rate of reaction and the position of equilibrium.
\qquad

| $\mathbf{0}$ | $\mathbf{8}$ | This question is about the reaction between sodium thiosulfate solution and |
| :--- | :--- | :--- | hydrochloric acid.

When hydrochloric acid is added to sodium thiosulfate solution, the mixture gradually becomes cloudy.

The equation for the reaction is:

$$
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{~s})
$$

| $\mathbf{0}$ | $\mathbf{8}$. | $\mathbf{1}$ Sulfur is produced in the reaction. |
| :--- | :--- | :--- | :--- |

Why does the mixture become cloudy?

A student investigated the effect of changing the concentration of sodium thiosulfate solution on the rate of the reaction.

Figure 6 shows the apparatus used.
Figure 6

A smaller percentage of light from the light source reaches the light sensor as the mixture becomes more cloudy.

This is the method used.

1. Measure $50 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium thiosulfate solution into the beaker.
2. Add $10 \mathrm{~cm}^{3}$ of hydrochloric acid to the sodium thiosulfate solution.
3. Immediately start a timer.
4. Record the percentage of light from the light source that reaches the light sensor every 20 seconds for 120 seconds.
5. Repeat steps 1 to 4 using $0.20 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium thiosulfate solution.

Question 8 continues on the next page

Figure 7 shows the results for $0.10 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium thiosulfate solution.
Figure 7

Percentage (\%) of light from light source reaching light sensor

| $\mathbf{0}$ | $\mathbf{8} .2$ | The percentage of light reaching the light sensor decreases by 1% when 7.1×10^{-5} |
| :--- | :--- | :--- | :--- | moles of sulfur is produced.

Determine the rate of reaction in $\mathrm{mol} / \mathrm{s}$ for the production of sulfur at 30 seconds.
You should draw a tangent on Figure 7.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Rate $=$ \qquad $\mathrm{mol} / \mathrm{s}$

| $\mathbf{0}$ | $\mathbf{8} .3$ Explain why the rate of reaction changes between 0 and 60 seconds. ${ }^{2}$. |
| :--- | :--- | :--- |

Answer in terms of concentration.

Use Figure 7.

\qquad
\qquad
\qquad
\qquad

Figure 8 is a repeat of Figure 7.
Figure 8

Figure 8 shows the results for $0.10 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium thiosulfate solution.
Sodium thiosulfate solution was in excess in the investigation.

| 0 | 8 | 4 |
| :--- | :--- | :--- | The line of best fit on Figure 8 is horizontal between 80 and 120 seconds because the reaction stopped.

Why did the reaction stop?
\qquad
\qquad
 sodium thiosulfate solution.

The same student did the investigation again the next day.
The student found that the same method produced different results for the percentage of light reaching the light sensor.
$\begin{array}{llll}0 & 8 & 6 & \text { How could the student improve the method so that the same percentages of light }\end{array}$ reached the light sensor?

Tick (\checkmark) one box.

Record the percentage of light every 10 seconds. \square
Stop light from other sources reaching the light sensor.

Use a larger volume of sodium thiosulfate solution.

Use a more sensitive light sensor.

| 0 | 8 | 7 | The student improved the method so that similar results were obtained on |
| :--- | :--- | :--- | :--- | different days.

What name is given to similar results obtained on different days under the same conditions by the same student?

Tick (\checkmark) one box.

Anomalous

Precise

Repeatable

Reproducible

Figure 9 shows the volumes of:

- sodium thiosulfate solution of concentration $0.10 \mathrm{~mol} / \mathrm{dm}^{3}$
- hydrochloric acid of concentration $0.05 \mathrm{~mol} / \mathrm{dm}^{3}$
which completely react to produce different masses of sulfur.
Figure 9

Key

--- $0.10 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium thiosulfate solution

- $0.05 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{8}$ Which expression represents the relationship between the volume (V) of sodium |
| :--- | :--- | :--- | :--- | thiosulfate solution used and the mass (m) of sulfur produced?

Use Figure 9.

Tick (\checkmark) one box.
$V \propto m$

$\mathrm{V} \sim \mathrm{m}$

V \ll m

$V=m$

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{9}$ Determine the simplest whole number ratio of the volumes of |
| :--- | :--- | :--- | :--- | sodium thiosulfate solution : hydrochloric acid which completely react with each other.

Use Figure 9.

\qquad
\qquad
\qquad
\qquad
\qquad

Simplest whole number ratio $=$ \qquad :

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	\qquad

	...
	\qquad

	\qquad
	\qquad
	..
	\qquad
	\qquad
	...

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

