$A Q A^{E}$

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

GCSE

Foundation Tier Paper 2

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

- The maximum mark for this paper is 100 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

| $\mathbf{0}$ | $\mathbf{1}$ |
| :--- | :--- |\quad This question is about water.

A student investigated pure water.
The student measured:

- the boiling point of pure water
- the pH of pure water.

0	1.	1
Complete the sentences.		

Choose answers from the box.

0	4	7	10	25	100

Pure water has a boiling point of \qquad ${ }^{\circ} \mathrm{C}$.

Pure water has a pH of \qquad .

| $\mathbf{0}$ | $\mathbf{1}$. |
| :--- | :--- | $\mathbf{2}$ What could the student use to measure the pH of pure water?

\qquad
\qquad

A different student investigated sea water.

Sea water contains dissolved solids.

This is the method used.

1. Measure a $50 \mathrm{~cm}^{3}$ sample of the sea water.
2. Heat the sample until all the water has evaporated.
3. Measure the mass of solid that remains.
4. Repeat steps 1 to 3 three more times.
$\begin{array}{llll}0 & \mathbf{1} & \mathbf{3} \text { Which two pieces of equipment were needed in this investigation? }\end{array}$
Tick (\checkmark) two boxes.

Balance

Measuring cylinder

Ruler

Thermometer

Timer

0	1	$\mathbf{4}$

Table 1

Sea water sample	Mass of solid that remained in grams
1	1.73
2	1.70
3	1.75
4	1.78

Calculate the mean mass of solid that remained.
\qquad
\qquad
\qquad

Mean mass = g
 dissolved solids.

Calculate the mass of dissolved solids in $1000 \mathrm{~cm}^{3}$ of this sea water.
\qquad
\qquad
\qquad

Mass = g

Sodium chloride is a dissolved solid in sea water.
Sodium chloride contains sodium ions and chloride ions.

0	1	6

Choose the answer from the box.

crimson	lilac	yellow

The student tested sea water for sodium ions using a flame test.

The colour of the flame was \qquad .

| 0 | 1 | $\mathbf{7}$ | Complete the sentence. |
| :--- | :--- | :--- | :--- | :--- |

Choose the answer from the box.

brown	green	white

The student tested sea water for chloride ions by adding nitric acid and silver nitrate solution.

The colour of the precipitate formed was \qquad .

Turn over for the next question

$\mathbf{0}$	$\mathbf{2}$ This question is about hydrocarbons in crude oil.

$\mathbf{0}$	$\mathbf{2} .1$	$\mathbf{1}$

Table 2

Fraction	Boiling point range in ${ }^{\circ} \mathbf{C}$
A	$200-300$
B	$100-150$
C	Below 30

Figure 1 shows the fractionating column used to separate fractions \mathbf{A}, \mathbf{B} and \mathbf{C}.
Figure 1

The temperature of the fractionating column is:

- $30^{\circ} \mathrm{C}$ at the top
- $400^{\circ} \mathrm{C}$ at the bottom.

Complete Figure 1 to show where fractions A, B and C are collected.

$\mathbf{0}$	$\mathbf{2} .2$	$\mathbf{2}$ Table 3 shows information about three fractions obtained from crude oil.

Table 3

Fraction	Range of number of carbon atoms in each molecule
Petrol	$5-12$
Diesel oil	$15-19$
Heavy fuel oil	$20-40$

Complete the sentences.
Choose answers from the box.

lower	the same	higher

Compared to petrol, the viscosity of heavy fuel oil is \qquad .

Compared to petrol, the flammability of diesel oil is \qquad .

Question 2 continues on the next page

Table 4 shows the percentage of two fractions obtained from two different sources of crude oil.

Table 4

Source	Percentage (\%) of fraction	
	Kerosene	Heavy fuel oil
J	13	30
K	4	44

0	2	3

You should:

- complete the y-axis scale
- plot the percentage of the heavy fuel oil fraction obtained from source \mathbf{K}.

Use Table 4.

Figure 2

Percentage (\%) of heavy fuel oil fraction

0	$\mathbf{2} .4$	4

Suggest why crude oil from source \mathbf{J} is in higher demand than crude oil from source K.

Use Table 4.
\qquad
\qquad

Large hydrocarbon molecules can be cracked to produce smaller hydrocarbon molecules including alkanes.

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{5}$ Which two of the following can be used to crack large hydrocarbon molecules? |
| :--- | :--- | :--- | :--- | Tick (\checkmark) two boxes.

A catalyst

A fertiliser

Air

Ozone

Steam

$\mathbf{0}$	$\mathbf{2} .6$	Alkanes have the general formula $\mathrm{C}_{n} \mathrm{H}_{2 \mathrm{n}+2}$

Complete the formula of the alkane molecule containing 11 carbon atoms.
\qquad

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{7}$	$\mathrm{C}_{2} \mathrm{H}_{6}$ is an alkane.

Which type of bond is found in a $\mathrm{C}_{2} \mathrm{H}_{6}$ molecule?
Tick (\checkmark) one box.

A double bond between two carbon atoms.

A double bond between two hydrogen atoms. \square
A single bond between two carbon atoms.

A single bond between two hydrogen atoms.

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{8}$ Which two substances are produced when alkanes completely combust?

Tick (\checkmark) two boxes.

Carbon

Carbon dioxide

Carbon monoxide

Hydrogen

Water

Turn over for the next question Turn over

0	$\mathbf{3}$ This question is about the Earth's atmosphere.

Table 5 shows:

- the estimated percentages of gases in the Earth's early atmosphere
- the percentages of gases in the Earth's atmosphere today.

Table 5

Gas	Estimated percentage (\%) in the Earth's early atmosphere	Percentage (\%) in the Earth's atmosphere today
Nitrogen	1.8	\mathbf{X}
Oxygen	0.2	20.95
Carbon dioxide	96.0	0.04
Other gases	2.0	0.92

0	3	1
1		

\qquad
\qquad

$$
X=
$$ \%

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{2}$ Which two other gases may have been in the Earth's early atmosphere?

Tick (\checkmark) two boxes.

Ammonia

Coal

Limestone

Methane

Poly(ethene)

Algae and plants increased the percentage of oxygen in the Earth's atmosphere.
The same process in algae and plants decreased the percentage of carbon dioxide in the Earth's atmosphere.
$\begin{array}{lll}0 & 3 & 3\end{array}$ Earth's atmosphere?

Tick (\checkmark) one box.

Fermentation

Photosynthesis

Rusting

Sedimentation

0	3	4
4		

Tick (\downarrow) two boxes.

Burning fossil fuels

Dissolving carbon dioxide in oceans

Eruption of volcanoes

Evolution of animals

Formation of sedimentary rocks \square

Figure 3 shows how the percentages of gases in the Earth's atmosphere may have changed since the atmosphere was formed.

Figure 3

Percentage
(\%) of gas in the Earth's atmosphere

Key

........... Carbon dioxide

- - - Nitrogen
-_Oxygen

$\mathbf{0}$	$\mathbf{3} .5$	$\mathbf{5}$ When was the percentage of oxygen in the Earth's atmosphere 8% ?

Use Figure 3.

0	$\mathbf{3} .6$	When did the percentage of nitrogen in the Earth's atmosphere become constant?

Use Figure 3.

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{7}$	Crude oil was formed from an ancient biomass as the Earth's atmosphere evolved.

What did this ancient biomass mainly consist of?
Tick (\checkmark) one box.

Limestone

Plankton

Sand

Why have scientists used estimated values for the percentages of the gases in Figure 3?

| 0 | 4 |
| :--- | :--- | This question is about ethanol.

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | The formula of ethanol is $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

Complete the displayed structural formula of ethanol.

0	4

Tick (\checkmark) one box.

As a protective coating on aluminium

In hand gel to kill microbes

To test for the presence of hydrogen gas

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{3}$ Ethanol is used as a solvent in some inks.

A student used paper chromatography to show that an ink contained two different dyes.

Figure 4 shows the apparatus at the end of the investigation.
Figure 4

Describe a method the student could have used for the investigation.
\qquad

0	4	4	Ethanol can be produced from sugar solution by fermentation.

What must be added to sugar solution to produce ethanol?

E5 and E10 are types of fuel used in cars.
These fuels contain ethanol and petrol.
Table 6 shows information about E5 and E10.

Table 6

Fuel	Percentage (\%) by mass of ethanol	Percentage (\%) by mass of petrol
E5	5	95
E10	10	90

0	4	5

Give your answer in grams.
Use Table 6.
\qquad
\qquad
\qquad
\qquad
\qquad

Mass = g

| 0 | $\mathbf{4}$ | 6 |
| :--- | :--- | :--- | :--- | The ethanol in E5 and E10 is produced from sugar.

Sugar is produced from plants.
Explain why the production of E10 removes more carbon dioxide from the atmosphere than the production of E5.

Use Table 6.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	$\mathbf{4}$	$\mathbf{7}$

Table 7

	Energy content in $\mathbf{M J}$ (megajoules) per $\mathbf{~ k g}$
Ethanol	30.0
Petrol	46.4

Suggest one disadvantage of using E10 instead of E5.
Complete the sentence.

A disadvantage of using E10 is that \qquad

| $\mathbf{0}$ | $\mathbf{5}$ Ammonia is produced in the Haber process. |
| :--- | :--- | :--- |

The raw materials for the Haber process are nitrogen and hydrogen.

$\mathbf{0}$	$\mathbf{5} .1$	$\mathbf{1}$ Draw one line from each raw material to the source of that raw material.

Raw material

Hydrogen
Hydrogen

Sand
\square
Limestone

Source of raw material
\square

Sand

$\mathbf{0}$	$\mathbf{5} .2$	$\mathbf{2}$ What are the states of nitrogen and of hydrogen when used in the Haber process?

Tick (\checkmark) one box.
State of nitrogen State of hydrogen

Gas	Gas	\square
Gas	Liquid	\square
Liquid	Gas	\square
Liquid	Liquid	\square

$\mathbf{0}$	$\mathbf{5} .3$	$\mathbf{3}$ The word equation for the production of ammonia is:

$$
\text { nitrogen }+ \text { hydrogen } \rightleftharpoons \text { ammonia }
$$

The atom economy of the reaction is 100%.

How does the word equation show that the atom economy is 100% ?
Tick (\checkmark) one box.

The reaction is reversible.

There are two reactants.

There is one product.

0	5	4	Figure 5 represents the Haber process.

Figure 5

A mixture of nitrogen, hydrogen and ammonia enters \mathbf{X}.

Complete the sentences.
Choose answers from the box.

evaporated	filtered	liquefied	recycled

In \mathbf{X}, the mixture is cooled.
The ammonia can be removed from \mathbf{X} because the ammonia is
\qquad .

The unreacted nitrogen and hydrogen are
\qquad .

Table 8 shows the percentage yield of ammonia at different pressures.
Table 8

Pressure in atmospheres	Percentage (\%) yield of ammonia
50	20
100	33
150	44
200	52
250	59
300	64

0	5	5

Draw a line of best fit.

Figure 6

0	5	6

Use Table 8.
\qquad
\qquad

| 0 | 6 |
| :--- | :--- | A student investigated the rate of reaction between sodium thiosulfate solution and hydrochloric acid.

Figure 7 shows the apparatus used.
Figure 7

When hydrochloric acid is added to sodium thiosulfate solution, the mixture gradually becomes cloudy.

A smaller percentage of light from the light source reaches the light sensor as the mixture becomes more cloudy.

This is the method used.

1. Measure $50 \mathrm{~cm}^{3}$ of sodium thiosulfate solution into the beaker.
2. Add $10 \mathrm{~cm}^{3}$ of hydrochloric acid to the sodium thiosulfate solution.
3. Immediately start a timer.
4. Record the percentage of light from the light source that reaches the light sensor every 20 seconds for 120 seconds.

0	6	1

$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+2 \mathrm{HCl} \rightarrow \ldots \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}+\mathrm{S}$

What is the state symbol for a solid?
Tick (\checkmark) one box.
(aq) \square
(g)

(I) \square
(s) \square

| 0 | 6 | 3 |
| :--- | :--- | :--- | The student monitored the cloudiness of the reaction mixture using a light sensor.

What other piece of equipment could be used to monitor the cloudiness of the reaction mixture?

Tick (\checkmark) one box.

Figure 8 shows the results.
Figure 8

0	6	4

Use Figure 8.

Tick (\checkmark) one box.

The rate of reaction decreased.

The rate of reaction stayed at zero. \square
The rate of reaction increased. \square

| 0 | 6 | 5 |
| :--- | :--- | :--- | The student stopped taking measurements after 120 seconds because the percentage of light reaching the sensor stayed constant.

Why did the percentage of light reaching the sensor stay constant?
Tick (\checkmark) one box.

No light was reaching the sensor.

One of the reactants was used up.

The reaction was too vigorous.

| 0 | 6 | 6 |
| :--- | :--- | :--- | higher concentration.

How would the line of best fit for sodium thiosulfate solution of a higher concentration compare with the line of best fit on Figure 8?

Tick (\checkmark) one box.

Initially the line of best fit would be less steep.

Initially the line of best fit would be the same steepness.

Initially the line of best fit would be steeper.

Question 6 continues on the next page

| $\mathbf{0}$ | $\mathbf{6} .7$ | The student then investigated the effect of changing the temperature on the rate |
| :--- | :--- | :--- | :--- | of reaction.

The student used sodium thiosulfate solution and hydrochloric acid which had been kept in an ice bath.

Which are two effects of using reactants kept in an ice bath rather than at room temperature?

Tick (\checkmark) two boxes.

Fewer reactant particles have the activation energy.

The reactant particles collide more frequently.
\square

The reactant particles have more energy.

The reactant particles move more slowly.

There are fewer reactant particles in the same volume.

$\mathbf{0}$	$\mathbf{7}$	This question is about fertilisers.

Ammonium nitrate is a fertiliser containing nitrogen.

| 0 | 7 | 1 |
| :--- | :--- | :--- | Complete the sentence.

Choose the answer from the box.

hydrochloric acid	nitric acid	sulfuric acid

Ammonium nitrate is produced by reacting ammonia with
\qquad .

| 0 | $\mathbf{7}$. | 2 |
| :--- | :--- | :--- | Ammonium nitrate fertiliser is sold in 600 kg bags.

A farmer spreads 40 bags of ammonium nitrate fertiliser on land with an area of $800000 \mathrm{~m}^{2}$.

Calculate the mass of ammonium nitrate fertiliser spread per m^{2} of land.
\qquad
\qquad
\qquad

Mass per $\mathrm{m}^{2}=$ \qquad $\mathrm{kg} / \mathrm{m}^{2}$

Question 7 continues on the next page

The scientist investigates the effect of different fertilisers on crop growth.
The scientist concludes that the ammonium nitrate fertiliser improves crop growth more than other fertilisers.

Suggest one reason why this conclusion might not be valid.

A different fertiliser containing nitrogen has the formula $\mathrm{K}_{2} \mathrm{NH}_{4} \mathrm{PO}_{4}$

| $\mathbf{0}$ | $\mathbf{7}$. |
| :--- | :--- | $\mathbf{4}$ How many atoms of nitrogen are in the formula $\mathrm{K}_{2} \mathrm{NH}_{4} \mathrm{PO}_{4}$?

Which other element in the fertiliser $\mathrm{K}_{2} \mathrm{NH}_{4} \mathrm{PO}_{4}$ is important for good crop growth?
[1 mark]
Tick (\checkmark) one box.

Hydrogen

Oxygen

Phosphorus

0	$\mathbf{7}$	6

What name is given to a mixture of different compounds in fixed proportions?
\qquad
(
\qquad

Turn over for the next question

$\mathbf{0}$	$\mathbf{8}$	This question is about copper wire and copper compounds.

Copper is used to make electrical wires.
Figure 9 shows how copper electrical wire is insulated using an addition polymer called poly(butene).

Figure 9

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{1}$ The addition polymer poly(butene) has the displayed structural formula:

Poly(butene) is produced from the monomer butene.

Complete Figure 10 to show the displayed structural formula of butene.

Figure 10

$\mathrm{CH}_{3} \mathrm{CH}_{3}$

C C
H H

Copper can be obtained by recycling scrap copper wire.

| $\mathbf{0}$ | $\mathbf{8} .2$ | Suggest why poly(butene) insulation must be removed from scrap copper wire before |
| :--- | :--- | :--- | the copper is recycled.

\qquad
\qquad

$\mathbf{0}$	$\mathbf{8} .3$	$\mathbf{3}$ Describe how scrap copper wire can be recycled to make new copper water pipes.

\qquad
\qquad
\qquad
\qquad

| 0 | $\mathbf{8} .4$ | Suggest two reasons why recycling scrap copper is more sustainable than extracting |
| :--- | :--- | :--- | copper from copper ores.

1 \qquad
\qquad
2 \qquad
\qquad

Question 8 continues on the next page

Copper sulfate is a compound of copper.
Copper sulfate solution contains copper(II) ions and sulfate ions.

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{5}$ A solution can be added to copper sulfate solution to show the presence of |
| :--- | :--- | :--- | :--- | copper(II) ions.

Name the solution added.
Give the result of the test.

Name of solution added \qquad
Give the result of the test.
\qquad
Result \qquad
\qquad

| 0 | 8 | 6 | Describe one test to show the presence of sulfate ions in copper sulfate solution. |
| :--- | :--- | :--- | :--- | Give the result of the test.

Test \qquad
\qquad
Result \qquad
Turn over for the next question

| 0 | 9 |
| :--- | :--- | A student investigated the change in mass when hydrated cobalt chloride was heated.

The word equation for the reaction is:
hydrated cobalt chloride \rightleftharpoons anhydrous cobalt chloride + water

This is the method used.

1. Add 2.0 g of hydrated cobalt chloride to an empty test tube.
2. Measure the mass of the test tube and contents.
3. Heat the test tube and contents gently for 30 seconds.
4. Allow the test tube and contents to cool.
5. Measure the mass of the test tube and contents.
6. Repeat steps 3 to 5 until the mass of the test tube and contents does not change.

Table 9 shows the results.
Table 9

Total heating time in seconds	Mass of test tube and contents in grams
0	26.5
30	26.2
60	25.9
90	25.6
120	25.6

0	$\mathbf{9}$	$\mathbf{1}$ Determine the mass of the empty test tube.

\qquad
\qquad

Mass of empty test tube $=$

0	9	2

\qquad
\qquad
\qquad
\qquad

0	9	3

\qquad
\qquad

Question 9 continues on the next page

Energy is taken in from the surroundings when hydrated cobalt chloride is heated.

| 0 | 9 | 4 |
| :--- | :--- | :--- | When 238 g of hydrated cobalt chloride is heated until the mass does not change, 88.1 kJ of energy is taken in.

The student heated 2.00 g of hydrated cobalt chloride until the mass did not change.

Calculate the energy taken in during this reaction.
Give your answer to 3 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad

Energy taken in (3 significant figures) $=$ \qquad kJ

0	$\mathbf{9} .5$	$\mathbf{5}$ What type of reaction takes place when hydrated cobalt chloride is heated?

\qquad
Turn over for the next question Turn over

Evaluate the use of glass for milk bottles compared with the use of a polymer for milk bottles.

Use features of life cycle assessments (LCAs) in your answer.
Use Table 10.
\qquad

| 1 | 0 | .2 |
| :--- | :--- | :--- | Milk is also sold in cardboard cartons.

A carton is made using $40 \mathrm{~cm}^{3}$ of cardboard.
The density of the cardboard is $0.40 \mathrm{~g} / \mathrm{cm}^{3}$.

Calculate the mass of the carton.
Use the equation:

$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	\ldots
	\qquad

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

