AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature

GCSE

CHEMISTRY

Foundation Tier Paper 1

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

$\mathbf{0}$	$\mathbf{1}$

0	1	1

Figure 1

Draw one line from each name to the correct label.

\square

A

Neutron

Proton

C

D

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$ An atom of element Y has:

- an atomic number of 9
- a mass number of 19 .

Give the number of electrons and the number of neutrons in this atom.
Choose answers from the box.

1	9	10	19	28

Number of electrons \qquad
Number of neutrons \qquad

Question 1 continues on the next page

Table 1 shows information about two isotopes of element \mathbf{Z}.
Table 1

	Mass number	Percentage abundance (\%)
Isotope A	39	93.3
Isotope B	41	6.7

Use Table 1 and the equation:
$A_{r}=\frac{\text { (mass number } \times \text { percentage) of isotope } \mathbf{A}+\text { (mass number } \times \text { percentage) of isotope } \mathbf{B}}{100}$
Give your answer to 3 significant figures.
\qquad
\qquad
\qquad
\qquad
$A_{r}(3$ significant figures $)=$ \qquad

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{4}$

Use the periodic table.

Element Z \qquad

0	1	5	Complete the sentence.

Choose the answer from the box.

electrons	neutrons	protons

Isotopes of the same element have different mass numbers because the isotopes have different numbers of \qquad .
Chose the answer from the box.

Turn over for the next question

$\mathbf{0}$	$\mathbf{2} \quad$ This question is about elements, compounds and mixtures.

$\mathbf{0}$	$\mathbf{2} .1$

Tick (\checkmark) one box.

Element

Compound

Mixture

The diagrams in Figure 2 represent different substances.and \bigcirc represent atoms of three different elements.

Figure 2

A

B

C

D

Use Figure 2 to answer questions 02.2 and 02.3.

$\mathbf{0}$	$\mathbf{2} .2$ Which diagram represents a mixture of compounds?

A

B \square
C \square
D \square

| $\mathbf{0}$ | $\mathbf{2} .3$ Which diagram represents a mixture of elements? |
| :--- | :--- | :--- |

A \square
B \square
C \square
D \square

Substances can be separated from mixtures by using different methods.

0	2	4

Sand can be separated from a mixture of sand and water by
\qquad .

A mixture of four liquids was fractionally distilled.
Figure 3 shows the apparatus used.
Figure 3

Table 2 shows the boiling points of the four liquids in the mixture.
Table 2

Liquid	Boiling point in ${ }^{\circ} \mathbf{C}$
A	97
B	138
C	78
D	118

Liquid \qquad

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{6}$ Suggest what would happen to the temperature of the water as the water flows |
| :--- | :--- | :--- | through the condenser.

\qquad
\qquad

| 0 | 2 | $\mathbf{7}$ | Describe how to obtain sodium chloride crystals from sodium chloride solution |
| :--- | :--- | :--- | :--- | by crystallisation.

\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{3}$	This question is about acids.

A student added four metals, A, B, C and D to hydrochloric acid.

Figure 4 shows the rate of bubbling in each tube.
Figure 4

Use Figure 4 to answer questions 03.1 and $\mathbf{0 3 . 2}$.

0	3	1

Tick (\checkmark) one box.
A

B

C

D

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{2}$ Which metal is the most reactive?

Tick (\checkmark) one box.
A

B

C

D

Name the metal oxide and the acid used in this reaction.

Name of metal oxide \qquad
Name of acid \qquad

0	3	4

Draw one line from each pH to the colour of universal indicator in a solution with that pH .
pH

Colour of universal indicator
\square
Blue
\square

Purple

> Red

Yellow

A student reacts an acid with an alkali in a titration.

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{5}$ What is the type of reaction when an acid reacts with an alkali? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.

Combustion

Decomposition

Neutralisation

| 0 | 3 | 6 | Figure 5 shows a piece of equipment used to measure the volume of the acid in |
| :--- | :--- | :--- | :--- | the titration.

Figure 5

What is the name of this piece of equipment?

Tick (\checkmark) one box.

Burette \square
Pipette

Syringe

Tube

Turn over for the next question

0	$\mathbf{4} \quad$ This question is about the periodic table.

Figure 6 shows an early version of the periodic table published by a scientist.
Figure 6

H							
Li	Be	B	C	N	0	F	
Na	Mg	Al	Si	P	S	Cl	
K Cu	Ca Zn	? ?	$\mathrm{Ti} \quad ?$	V As	Cr Se	Mn Br	FeCoNi
$\mathrm{Rb} \quad \mathrm{Ag}$	Sr Cd	$Y \quad$ In	$\begin{array}{ll} \mathrm{Zr} & \mathrm{Sn} \end{array}$	Nb Sb	Mo Te	?	Ru Rh Pd

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{1}$ The scientist left gaps in the periodic table in Figure 6.

Each gap is represented by a question mark (?).

Give one reason why the scientist left gaps in this periodic table.
\qquad
\qquad

| 0 | 4 | 2 |
| :--- | :--- | :--- | Which scientist published the periodic table in Figure 6?

Tick (\checkmark) one box.

Bohr

Chadwick
\square

Mendeleev \square

0	4	3

One extra group of elements has been added.

What is the name of the extra group of elements in the modern periodic table?
Tick (\checkmark) one box.

Alkali metals

Halogens

Noble gases \square

| 0 | 4 | 4 | Why do the elements in Group 1 of the modern periodic table have similar |
| :--- | :--- | :--- | :--- | chemical properties?

Tick (\checkmark) one box.

The elements all form negative ions.

The elements all have one electron in the outer shell. \square

The elements all have the same number of shells.

Question 4 continues on the next page

| 0 | 4 | $\mathbf{5}$ Table 3 shows the melting points of the first five elements going down Group 1. |
| :--- | :--- | :--- | :--- |

Table 3

Element	Melting point in ${ }^{\circ} \mathrm{C}$
Lithium	181
Sodium	98
Potassium	\mathbf{X}
Rubidium	39
Caesium	29

Predict value \mathbf{X}.

$$
X=
$$ ${ }^{\circ} \mathrm{C}$

| 0 | 4 | 6 |
| :--- | :--- | :--- | to water.

0	4	.7

Table 4

Element	State at $150^{\circ} \mathrm{C}$	Symbol	Formula of the compound with hydrogen
Fluorine	gas	F	HF
Chlorine		Cl	HCl
Bromine	gas	Br	HBr
lodine	liquid	I	HI
Astatine	solid	At	

Complete Table 4.

| 0 | $\mathbf{4}$ | . | 8 |
| :--- | :--- | :--- | :--- | The elements in Group 7 consist of molecules.

What is the formula of a molecule of bromine?
Tick (\checkmark) one box.

Br

Br_{2}

Br^{2}

2 Br

$\mathbf{0}$	$\mathbf{5}$	A student investigated the reaction of magnesium with hydrochloric acid.

Figure 7 shows the apparatus used.
Figure 7

This is the method used.

1. Set up the apparatus as shown in Figure 7.
2. Cut 10 mm of magnesium ribbon.
3. Remove the stopper.
4. Add the magnesium ribbon to the conical flask.
5. Replace the stopper as quickly as possible.
6. Record the final reading on the gas syringe when the reaction has stopped.
7. Repeat steps 1 to 6 three more times.
8. Repeat steps 1 to 7 with different lengths of magnesium ribbon.

| $\mathbf{0}$ | $\mathbf{5} .1$ Which gas is produced when magnesium reacts with hydrochloric acid? |
| :--- | :--- | :--- |

Tick (\checkmark) one box.

Carbon dioxide

Chlorine

Hydrogen

Oxygen

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{2}$ What was the independent variable in the investigation?

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{3}$ Give one control variable in the investigation.

Question 5 continues on the next page

Table 5 shows the results for one length of magnesium ribbon.
Table 5

	Trial 1	Trial 2	Trial 3	Trial 4
Volume of gas produced in $\mathbf{c m}^{\mathbf{3}}$	19	36	37	32

One of the results was anomalous.

| 0 | 5 | 4 |
| :--- | :--- | :--- | Which trial in Table 5 gave an anomalous result?

Trial \qquad

0	5	5
5		

| 0 | 5 | 6 |
| :--- | :--- | :--- | magnesium ribbon.

Table 6

Length of magnesium ribbon in $\mathbf{~ m m}$	10	20	30	40	50	60
Mean volume of gas produced in $\mathbf{c m}^{\mathbf{3}}$	7	14	21	28	35	42

Plot the data from Table 6 on Figure 8.
Draw a line of best fit.

Figure 8

Mean volume of gas produced in cm^{3}

0	5	7

As the length of the magnesium ribbon increases, the mean volume of gas produced

0	6

Figure 9 shows diagrams that represent different structures.
Figure 9

A

B

C

D

Use Figure 9 to answer questions 06.1 and $\mathbf{0 6 . 2}$.

$\mathbf{0}$	$\mathbf{6} .1$	$\mathbf{1}$

Tick (\checkmark) one box.
A

B

C

D

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{2}$ Which diagram represents poly(ethene)?

Tick (\checkmark) one box.
A

B

C \square
D \square

Figure 10 represents the structure of diamond.
Figure 10

Key

- Carbon atom

0	6	3

| 0 | 6 |
| :--- | :--- | :--- | .4 Which is a property of diamond?

Tick (\checkmark) one box.

Conducts electricity \square
Low melting point \square
Very hard \square

Question 6 continues on the next page

0	6	5	Figure 11 shows a model of a molecule.

Figure 11

Complete the molecular formula of the molecule.

Molecular formula $=\mathrm{C} \quad \mathrm{H}$ \qquad

Carbonic acid is a compound of carbon.
The formula of carbonic acid is $\mathrm{H}_{2} \mathrm{CO}_{3}$

| 0 | 6 | 6 |
| :--- | :--- | :--- | Which ion is produced by carbonic acid in aqueous solution?

Tick (\checkmark) one box.
H^{+} \square
OH^{-}

$\mathrm{O}^{2-} \square$

0	6	.7

Relative atomic masses $\left(A_{r}\right): \quad H=1 \quad C=12 \quad O=16$
\qquad
\qquad
\qquad

Relative formula mass $\left(M_{\mathrm{r}}\right)=$

0	$\mathbf{7}$	This question is about small particles.

$\mathbf{0}$	$\mathbf{7} .1$	Coarse particles, fine particles and nanoparticles are all small particles.

Which is the largest particle?
Tick (\checkmark) one box.

Coarse particle

Fine particle

Nanoparticle

0	7.	2

Figure 12

The surface area of the cubic nanoparticle is $24 \mathrm{~nm}^{2}$.

Calculate:

- the volume of the cubic nanoparticle
- the simplest surface area : volume ratio of the cubic nanoparticle.
\qquad
\qquad
Volume $=$ $n m^{3}$
\qquad
\qquad
Simplest surface area : volume ratio $=$ \qquad : 1

| 0 | $\mathbf{7}$ | $\mathbf{3}$ Catalysts made of nanoparticles are often more effective than catalysts made of |
| :--- | :--- | :--- | :--- | normal sized particles.

Complete the sentences.

Compared with normal sized particles, the surface area to volume ratio of nanoparticles is \qquad .

This means that the mass of a nanoparticle catalyst needed to have the same effect as the same catalyst made of normal sized particles is \qquad .

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{4}$ Silver nanoparticles can be added to the material used to make socks. |
| :--- | :--- | :--- | :--- |

Some facts about silver and bacteria are:

- silver nanoparticles are small enough to be breathed in
- silver is very expensive
- silver can kill bacteria
- bacteria can cause infections
- bacteria can break down sweat to produce unpleasant smells.

Suggest one advantage and one disadvantage of wearing socks containing silver nanoparticles.

Advantage \qquad
\qquad
Disadvantage \qquad
\qquad

$\mathbf{0}$	$\mathbf{7} .5$	An atom has a radius of $1 \times 10^{-10} \mathrm{~m}$.

A spherical nanoparticle has a radius of $1 \times 10^{-8} \mathrm{~m}$.

How many times larger is the radius of the nanoparticle than the radius of the atom?
[1 mark]
Tick (\checkmark) one box.

2 times

10 times

100 times

200 times

Turn over for the next question

$\mathbf{0}$	$\mathbf{8} \quad$ This question is about electrolysis.

Ionic compounds decompose when they are electrolysed.
A student electrolyses sodium sulfate solution.
Figure 13 shows the apparatus used.
Figure 13

0	8	1
1	Sodium sulfate solution contains:	

- hydrogen ions
- hydroxide ions
- sodium ions
- sulfate ions.

Oxygen is produced at the positive electrode.
Which ions are discharged at the positive electrode to produce oxygen?
Tick (\checkmark) one box.

Hydrogen ions

Hydroxide ions \square

Sodium ions

Sulfate ions \square

0	8	$\mathbf{2}$ Figure 14 shows one of the measuring cylinders during the electrolysis. ${ }^{2}$.

Figure 14

What is the volume of gas in the measuring cylinder?

Volume of gas = \qquad cm^{3}

Why can ionic compounds not be electrolysed when solid?
You should answer in terms of ions.
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{8} .4$ | Table $\mathbf{7}$ shows the products of electrolysis of two molten compounds. |
| :--- | :--- | :--- | :--- |

Table 7

Molten compound	Product at negative electrode	Product at positive electrode
Potassium iodide	Potassium	
Zinc bromide		Bromine

Complete Table 7.

$\mathbf{0}$	$\mathbf{8} .5$	$\mathbf{5}$ The electrolysis of molten sodium chloride is used to extract sodium metal.

Why is sodium metal extracted by electrolysis instead of by reduction with carbon?
Tick (\checkmark) one box.

Carbon conducts electricity.

Carbon is less reactive than sodium.

Carbon reduction uses more energy.

| $\mathbf{0}$ | $\mathbf{8} .6$ What is the state symbol for molten sodium chloride? |
| :--- | :--- | :--- |

Tick (\checkmark) one box.
(aq) \square
(g) \square
(I)

(s) \square

| $\mathbf{0}$ | $\mathbf{8} .7$ | Titanium can be produced from titanium oxide by electrolysis. |
| :--- | :--- | :--- | :--- |

The equation for the reaction is:

$$
\mathrm{TiO}_{2} \rightarrow \mathrm{Ti}+\mathrm{O}_{2}
$$

Calculate the percentage atom economy for the production of titanium from titanium oxide by electrolysis.

Use the equation:
Percentage atom economy $=\frac{\text { Relative atomic mass of desired product }}{\text { Relative formula mass of reactant }} \times 100$
Relative atomic mass $\left(A_{\mathrm{r}}\right): \quad \mathrm{Ti}=48$
Relative formula mass $\left(M_{r}\right): \quad \mathrm{TiO}_{2}=80$
\qquad
\qquad
\qquad
\qquad

Percentage atom economy = \qquad \%

$\mathbf{0}$	$\mathbf{9} \quad$ This question is about metals and non-metals.

Figure 15 shows an outline of part of the periodic table.
Figure 15

Element \mathbf{Q} does not conduct electricity.
Which section of the periodic table in Figure 15 is most likely to contain element \mathbf{Q} ?
Tick (\checkmark) one box.
A

B

C \square
D \square

$\mathbf{0}$	$\mathbf{9}$	$\mathbf{2}$ Element \mathbf{R} forms ions of formula \mathbf{R}^{2+} and \mathbf{R}^{3+}

Which section of the periodic table in Figure 15 is most likely to contain element \mathbf{R} ? [1 mark]
Tick (\checkmark) one box.
A

B

C

D

| 0 | 9 | 3 |
| :--- | :--- | :--- | those of the transition elements.

1 \qquad
\qquad
2 \qquad
\qquad

0	9	4	Complete Figure 16 to show the electronic structure of an aluminium atom.

Use the periodic table.

Figure 16

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{5}$ Aluminium is a metal. |
| :--- | :--- | :--- | :--- |

Describe how metals conduct electricity.
Answer in terms of electrons.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	9	6

\qquad

| 0 | 9. | $\mathbf{7}$ Magnesium oxide is a compound formed from the metal magnesium and the |
| :--- | :--- | :--- | non-metal oxygen.

Describe what happens when a magnesium atom reacts with an oxygen atom.
You should refer to electrons in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The equation for the reaction is:

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A student investigated the effect of changing the mass of sodium carbonate powder on the highest temperature reached by the reaction mixture.

| 1 | $\mathbf{0}$. | $\mathbf{1}$ Plan a method to investigate the effect of changing the mass of sodium carbonate |
| :--- | :--- | :--- | powder on the highest temperature reached.

\qquad

Figure 17 shows a line of best fit drawn through the student's results.
Figure 17

Highest temperature reached by the reaction mixture in ${ }^{\circ} \mathrm{C}$

1	$\mathbf{0}$	$\mathbf{2}$ Determine the gradient of the line of best fit in Figure 17.

Use the equation:

$$
\text { Gradient }=\frac{\text { Change in highest temperature }}{\text { Change in mass }}
$$

Give the unit.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Gradient = \qquad Unit \qquad
10.3 The initial temperature of the reaction mixture is where the line of best fit would meet the y-axis.

Determine the initial temperature of the reaction mixture.
Show your working on Figure 17.

Initial temperature of the reaction mixture $=$ \qquad ${ }^{\circ} \mathrm{C}$
$\begin{array}{lll}1 & \mathbf{0} .4 & \mathbf{4} \text { Another student repeated the investigation but added sodium carbonate until the }\end{array}$ sodium carbonate was in excess.

Which sketch graph shows the results obtained when sodium carbonate was added until in excess?

Tick (\checkmark) one box.

Figure 18

1	0	$\mathbf{5}$ What do labels X and Y represent on Figure 18?

X \qquad
Y \qquad
$\begin{array}{lll}1 & \mathbf{0} .6 \text { How does the reaction profile show that the reaction is exothermic? }\end{array}$
Use Figure 18.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

	\qquad

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

