AQA

Please write clearly in	block capitals.	
Centre number	Candidate number]
Surname		_
Forename(s)		_
Candidate signature		_
	I declare this is my own work.	

GCSE CHEMISTRY

Higher Tier Paper 1

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

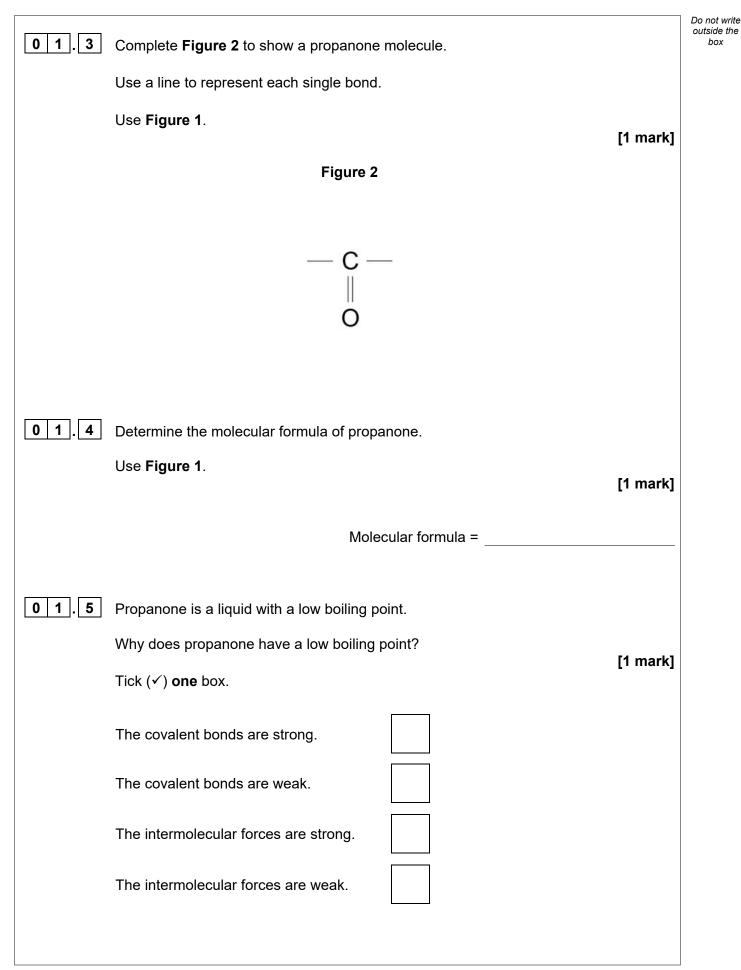
- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

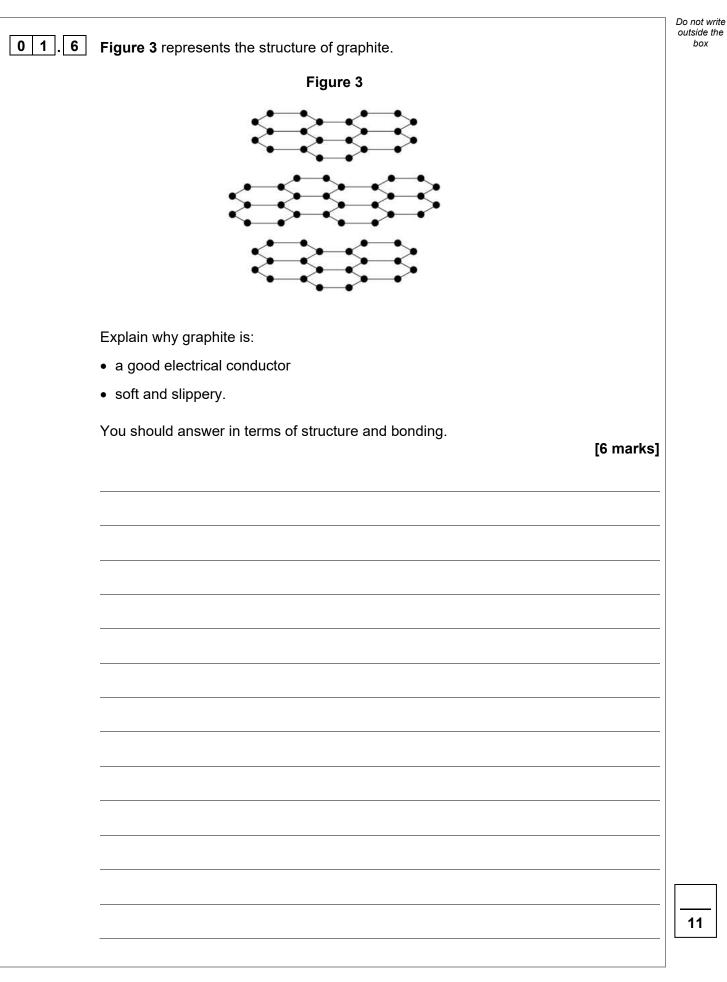
- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

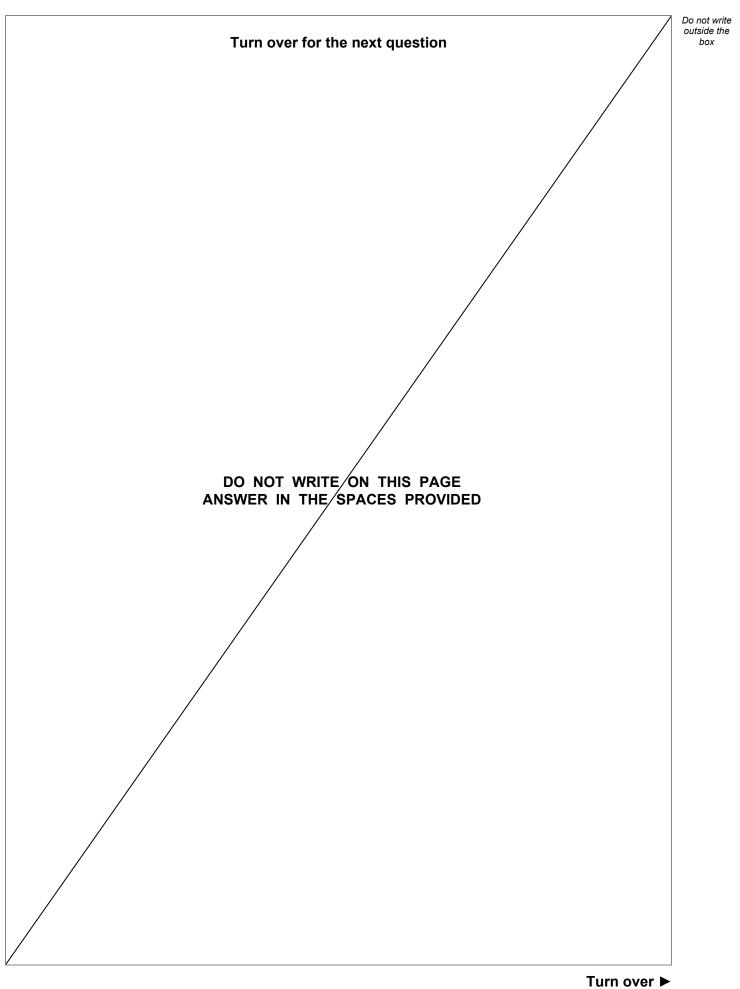
- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.



For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	



01	This question is about carbon and its compounds.	Do not write outside the box
	Fullerenes are molecules of carbon atoms.	
	The first fullerene to be discovered was Buckminsterfullerene (C ₆₀).	
01.1	What shape is a Buckminsterfullerene molecule? [1 mark]	
01.2	Give one use of a fullerene. [1 mark]	
	Pronanone is a compound of carbon, bydrogen and ovygen	
	Propanone is a compound of carbon, hydrogen and oxygen.	
	Figure 1 shows the dot and cross diagram for a propanone molecule. Figure 1	
	H H C C C H C C H H C C C H H C C C H H C C C H H C C C H H C C C H H C C C H H C C C H H C C C H H C C C H H C C C C H C H C C C H C H C C C H C C H C C H C C H C C H C C C C H C	



0 2			structure and the periodic table.		Do not outside box
	Gallium (G	a) is an element th	nat has two isotopes.		
0 2.1	Give the m	eaning of 'isotope:	s'.		
	You should	answer in terms o	of subatomic particles.	[2 marks]	
0 2 2 2	Table 1 sh	ows the mass num	nbers and percentage abundances o	fthe	
<u>· · - </u> . (-)	isotopes of				
			Table 1		
		Mass number	Percentage abundance (%)		
		69	60		
		71	40		
	Calculate tl	he relative atomic	mass (A _r) of gallium.		
		answer to 1 decima			
				[2 marks]	
			c mass (1 decimal place) =		

	Gallium (Ga) is in Group 3 of the modern periodic table.	Do not write outside the box
02.3	Give the numbers of electrons and neutrons in an atom of the isotope ⁶⁹ ₃₁ Ga [2 marks]	
	Number of electrons	
	Number of neutrons	
02.4	What is the most likely formula of a gallium ion? [1 mark] Tick (✓) one box. Ga+ Ga+	
	Ga ^{3_}	
02.5	Gallium was discovered six years after Mendeleev published his periodic table.	
	Give two reasons why the discovery of gallium helped Mendeleev's periodic table to become accepted. [2 marks]	
	1	
	2	
		9

		Do not wri
0 3	This question is about the extraction of metals.	outside th box
	Element R is extracted from its oxide by reduction with hydrogen.	
	The equation for the reaction is:	
	$3 H_2$ + $\mathbf{R}O_3 \rightarrow \mathbf{R}$ + $3 H_2O$	
0 3.1	The sum of the relative formula masses (M_r) of the reactants (3 H ₂ + R O ₃) is 150	
	Calculate the relative atomic mass (A_r) of R .	
	Relative atomic masses (A_r): H = 1 O = 16	
	[2 marks]	
	Relative atomic mass (A_r) of R =	
0 3 2	Identify element R .	
	You should use:	
	 your answer to question 03.1 	
	the periodic table.	
	[1 mark]	
	Identity of R =	

0 3.3	Carbon is used to extract tin (Sn) from tin oxide (SnO ₂).	Do not w outside t box
	The equation for the reaction is:	
	$SnO_2 + C \rightarrow Sn + CO_2$	
	Calculate the percentage atom economy for extracting tin in this reaction.	
	Relative atomic masses (A_r): C = 12 O = 16 Sn = 119	
	[3 marks]	
	Percentage atom economy =%	
	Question 3 continues on the next page	
	Turn over ▶	•

IB/M/Jun21/8462/1H

0 3 . 4 Tungsten (W) is a metal.

Tungsten is extracted from tungsten oxide (WO₃).

All other solid products from the extraction method must be separated from the tungsten.

Table 2 shows information about three possible methods to extract tungsten from tungsten oxide.

Method	Reactant	Relative cost of reactant	Products
			Tungsten solid
1	Carbon	Low	Carbon dioxide gas
			Tungsten carbide solid
2	Lludragan	High	Tungsten solid
2	Hydrogen	High	Water vapour
3	Iron		Tungsten solid
3	Iron	Low	Iron oxide solid

Table 2

Evaluate the three possible methods for extracting tungsten from tungsten oxide. [4 marks]

Do not write outside the

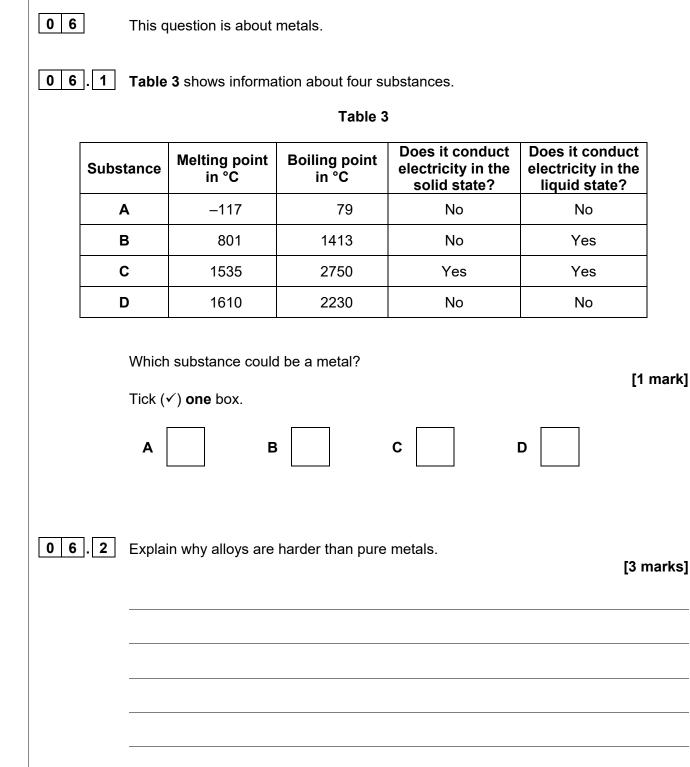
box

0 4	This question is about Group 1 elements.	Do not write outside the box
04.1	Give two observations you could make when a small piece of potassium is added to water.	
	[2 marks]	
	2	
04.2	Complete the equation for the reaction of potassium with water.	
	You should balance the equation. [2 marks] $K + H_2O \rightarrow +$	
04.3	Explain why the reactivity of elements changes going down Group 1. [4 marks]	

		Do not write
	Sodium reacts with oxygen to produce the ionic compound sodium oxide.	outside the box
	Oxygen is a Group 6 element.	
04.4	Draw a dot and cross diagram to show what happens when atoms of sodium and	
	oxygen react to produce sodium oxide. [4 marks]	
	Diagram	

04.5	Why is oxygen described as being reduced in the reaction between sodium and oxygen? [1 mark]	Do not write outside the box
04.6	Explain why sodium oxide has a high melting point. [3 marks]	
		16
	Turn over for the next question	

0 5	This question is about salts.	Do not write outside the box
0 5.1	Name the salt produced by the neutralisation of hydrochloric acid with potassium hydroxide. [1 mark]	
05.2	Write an ionic equation for the neutralisation of hydrochloric acid with potassium hydroxide. [1 mark] $- + $	
0 5.3	Soluble salts can be produced by reacting dilute hydrochloric acid with an insoluble solid. Copper, copper carbonate and copper oxide are insoluble solids.	
	Which of these insoluble solids can be used to make a copper salt by reacting the solid with dilute hydrochloric acid? [1 mark] Tick (✓) one box.	
	Copper and copper carbonate only	
	Copper and copper oxide only	
	Copper carbonate and copper oxide only	
	Copper, copper carbonate and copper oxide	

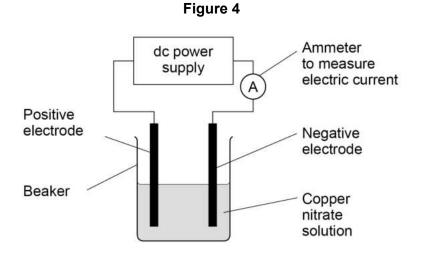

	A student makes crystals of magnesium sulfate.	Do not write outside the box
	This is the method used.	
	1. Add sulfuric acid to a beaker.	
	2. Warm the sulfuric acid.	
	3. Add a spatula of magnesium oxide to the beaker.	
	4. Stir the mixture.	
	5. Repeat steps 3 and 4 until there is magnesium oxide remaining in the beaker.	
	6. Filter the mixture.	
	7. Evaporate the filtrate gently until crystals start to form.	
	8. Leave the solution to finish crystallising.	
0 5.4	Give one reason for:	
	• step 2	
	• step 5	
	• step 6. [3 marks]	
	Step 2	
	Step 5	
	Step 6	
0 5.5	How should the filtrate be evaporated gently in step 7 ? [1 mark]	

IB/M/Jun21/8462/1H

<pre>The equation for the reaction is:</pre>	0 5.6	Iron chloride is produced by heating iron in chlorine gas.	Do not write outside the box
Calculate the volume of chlorine needed to react with 14 g of iron. You should calculate: • the number of moles of iron used • the number of moles of chlorine that react with 14 g of iron • the volume of chlorine needed. Relative atomic mass (<i>A</i> _r): Fe = 56 The volume of 1 mole of gas = 24 dm ³ [3 marks]		The equation for the reaction is:	
You should calculate: • the number of moles of iron used • the number of moles of chlorine that react with 14 g of iron • the volume of chlorine needed. Relative atomic mass (A _r): Fe = 56 The volume of 1 mole of gas = 24 dm ³ [3 marks] [3 marks]		$2Fe + 3Cl_2 \rightarrow 2FeCl_3$	
 the number of moles of iron used the number of moles of chlorine that react with 14 g of iron the volume of chlorine needed. Relative atomic mass (<i>A</i>_r): Fe = 56 The volume of 1 mole of gas = 24 dm³ [3 marks] 		Calculate the volume of chlorine needed to react with 14 g of iron.	
 the number of moles of chlorine that react with 14 g of iron the volume of chlorine needed. Relative atomic mass (<i>A</i>_r): Fe = 56 The volume of 1 mole of gas = 24 dm³ [3 marks] 		You should calculate:	
the volume of chlorine needed. Relative atomic mass (<i>A</i> _r): Fe = 56 The volume of 1 mole of gas = 24 dm ³ [3 marks] [3 marks] [3 marks] [4 marks]		the number of moles of iron used	
Relative atomic mass (Ar): Fe = 56 The volume of 1 mole of gas = 24 dm ³ [3 marks]		 the number of moles of chlorine that react with 14 g of iron 	
The volume of 1 mole of gas = 24 dm ³ [3 marks] [the volume of chlorine needed.	
[3 marks]		Relative atomic mass (A_r): Fe = 56	
Volume of chlorine = dm ³			
Volume of chlorine =dm ³			
Volume of chlorine = dm ³			
Volume of chlorine = dm ³			
Volume of chlorine = dm ³			
		Volume of chlorine = dm ³	10

Do not write outside the

06.3	A student wants to compare the reactivity of an unknown metal, ${f Q}$, with that of zinc.	Do not write outside the box
	Both metals are more reactive than silver.	
	The student is provided with:	
	silver nitrate solution	
	• metal Q powder	
	• zinc powder	
	• a thermometer	
	normal laboratory equipment.	
	No other chemicals are available.	
	Describe a method the student could use to compare the reactivity of metal Q with that of zinc.	
	Your method should give valid results. [4 marks]	
		8



7	This question is al	bout chemical react	ions and ele	ectricity.	
7.1	Electrolysis and cl	hemical cells both i	nvolve chen	nical reactions and electric	ity.
	Explain the differe	ence between the pr	ocesses in	electrolysis and in a chem	cal cell. [2 marks]
7.2	A teacher demons	strates the electroly	sis of molte	n lead bromide.	
	Bromine is produc	ed at the positive e	lectrode.		
	Complete the half	equation for the pro	oduction of	bromine.	
	You should baland	ce the half equation			[2 marks]
		$Br^{-} \rightarrow$	+		
7.3	Two aqueous salt	solutions are electr	olysed usin	g inert electrodes.	
	Complete Table 4	to show the produc	ct at each e	lectrode.	[3 marks]
		Tabl	o 1		
		Product		Product at	
Salt s	olution	positive elec		negative electrode	
Coppe	er nitrate			copper	
Potass	sium iodide				

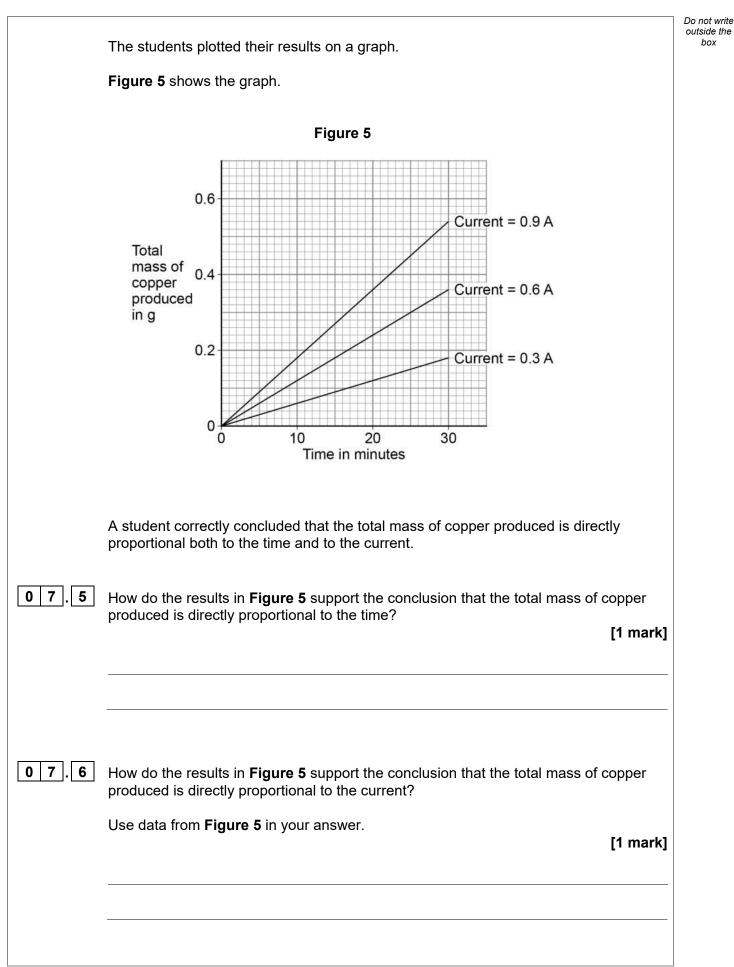
Some students investigated the electrolysis of copper nitrate solution using inert electrodes.

Figure 4 shows the apparatus.

The students investigated how the mass of copper produced at the negative electrode varied with:

- time
- current.

This is the method used.


- 1. Weigh the negative electrode.
- 2. Set up the apparatus shown in Figure 4.
- 3. Adjust the power supply until the ammeter shows a current of 0.3 A
- 4. Switch off the power supply after 5 minutes.
- 5. Rinse the negative electrode with water and allow to dry.
- 6. Reweigh the negative electrode.
- 7. Repeat steps 1 to 6 for different times.
- 8. Repeat steps 1 to 7 at different currents.

Do not write outside the

			Do i out
7.4	Some of the copper produced did not stick to the negative electrode but fer bottom of the beaker.	ell to the	
	Suggest how the students could find the total mass of copper produced.	[4 marks]	
	Question 7 continues on the next page		
		Turn over ►	

IB/M/Jun21/8462/1H

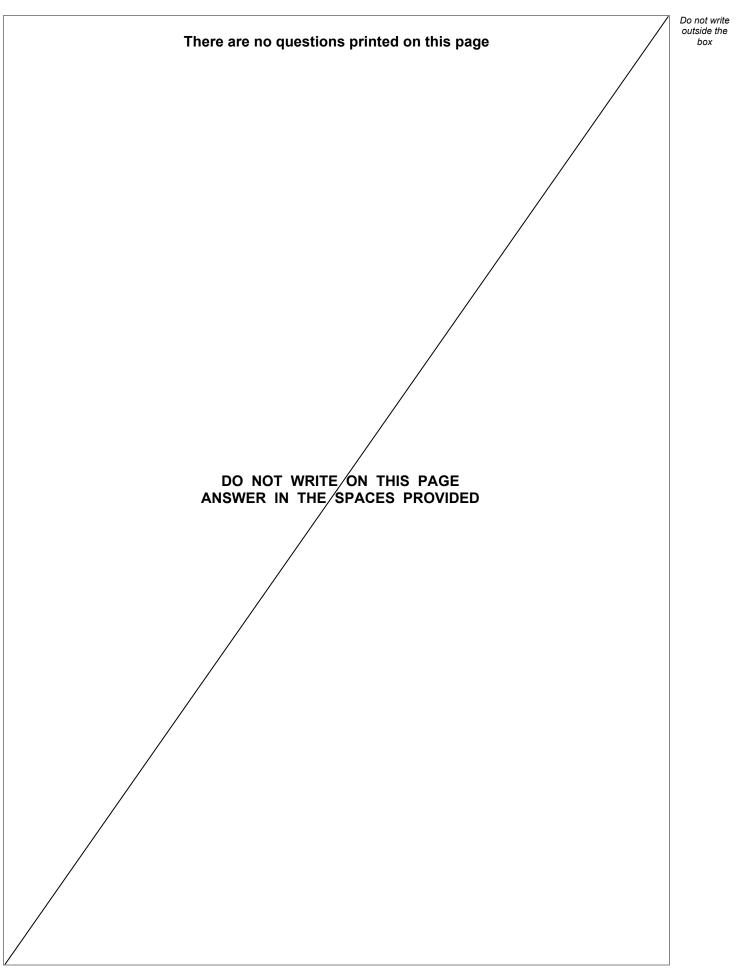
0 7.7	Copper nitrate solution is blue.	Do not write outside the box
	Suggest why the blue colour of the copper nitrate solution fades during the electrolysis.	
	[1 mark]	
0 7.8	Determine the number of atoms of copper produced when copper nitrate solution is electrolysed for 20 minutes at a current of 0.6 A	
	Give your answer to 3 significant figures.	
	Use Figure 5.	
	Relative atomic mass (A_r): Cu = 63.5	
	The Avogadro constant = 6.02 × 10 ²³ per mole [3 marks]	
		[]
	Number of atoms (3 significant figures) =	17
	Turn over for the next question	

0 8	This question is about the reaction between hydrogen sulfide (H ₂ S) and oxygen.	Do not write outside the box
	The equation for the reaction is:	
	$2 H_2 S(g) + 3 O_2(g) \rightarrow 2 H_2 O(g) + 2 SO_2(g)$	
0 8 . 1	What does H ₂ O(g) represent? [1 mark]	
08.2	Calculate the volume of oxygen required to react with 50 cm ³ of hydrogen sulfide. [1 mark]	
	Volume = cm ³	
08.3	Figure 6 shows part of the reaction profile for the reaction.	
	The reaction is exothermic.	
	Complete Figure 6.	
	You should:	
	complete the profile line	
	 label the activation energy 	
	label the overall energy change. [3 marks]	
	[3 marks] Figure 6	
	Energy $2 H_2S(g) + 3 O_2(g)$	
	Progress of reaction	

IB/M/Jun21/8462/1H

Do not write outside the box 0 8 4 Figure 7 shows the displayed formula equation for the reaction of hydrogen sulfide with oxygen. Figure 7 $2H-S-H + 3O=O \rightarrow 2H-O-H + 2O=S=O$ Table 5 shows some of the bond energies. Table 5 H-OH-S0=0 S = 0Bond Energy in kJ/mol 364 498 464 Х In the reaction the energy released forming new bonds is 1034 kJ/mol greater than the energy needed to break existing bonds. Calculate the bond energy **X** for the S = O bond. Use Figure 7 and Table 5. [5 marks] 10 X = kJ/mol

		Do not write outside the box
09	This question is about acids.	
	Hydrogen chloride and ethanoic acid both dissolve in water.	
	All hydrogen chloride molecules ionise in water.	
	Approximately 1% of ethanoic acid molecules ionise in water.	
09.1	A solution is made by dissolving 1 g of hydrogen chloride in 1 dm ³ of water. Which is the correct description of this solution? [1 mark]	
	Tick (✓) one box.	
	A concentrated solution of a strong acid	
	A concentrated solution of a weak acid	
	A dilute solution of a strong acid	
	A dilute solution of a weak acid	
09.2	Which solution would have the lowest pH? [1 mark]	
	Tick (✓) one box.	
	0.1 mol/dm ³ ethanoic acid solution	
	0.1 mol/dm ³ hydrogen chloride solution	
	1.0 mol/dm ³ ethanoic acid solution	
	1.0 mol/dm ³ hydrogen chloride solution	



	A student investigated the concentration of a solution of sodium hydroxide by titration	Do not write outside the box
	with a 0.0480 mol/dm ³ ethanedioic acid solution.	502
	This is the method used.	
	1. Measure 25.0 cm ³ of the sodium hydroxide solution into a conical flask using a 25.0 cm ³ pipette.	
	2. Add two drops of indicator to the sodium hydroxide solution.	
	 Fill a burette with the 0.0480 mol/dm³ ethanedioic acid solution to the 0.00 cm³ mark. 	
	4. Add the ethanedioic acid solution to the sodium hydroxide solution until the indicator changes colour.	
	5. Read the burette to find the volume of the ethanedioic acid solution used.	
09.3	Suggest two improvements to the method that would increase the accuracy of the	
	result. [2 marks]	
	1	
	2	
	Question 9 continues on the next page	

09.4	Ethanedioic acid is a solid at room temperature.	Do not write outside the box
	Calculate the mass of ethanedioic acid ($H_2C_2O_4$) needed to make 250 cm ³ of a solution with concentration 0.0480 mol/dm ³ Relative formula mass (M_r): $H_2C_2O_4 = 90$ [2 marks]	
09.5	The student found that 25.0 cm ³ of the sodium hydroxide solution was neutralised by 15.00 cm ³ of the 0.0480 mol/dm ³ ethanedioic acid solution. The equation for the reaction is: $H_2C_2O_4 + 2NaOH \rightarrow Na_2C_2O_4 + 2H_2O$ Calculate the concentration of the sodium hydroxide solution in mol/dm ³	
	[3 marks]	
	Concentration = mol/dm ³ END OF QUESTIONS	9

IB/M/Jun21/8462/1H

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

	_
Copyright information	
For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This be is published after each live examination series and is available for free download from www.aqa.org.uk.	oklet
Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact Copyright Team.	
Copyright © 2021 AQA and its licensors. All rights reserved.	

