AQA

Please write clearly in	block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	

GCSE CHEMISTRY

Foundation Tier Paper 1

Time allowed: 1 hour 45 minutes

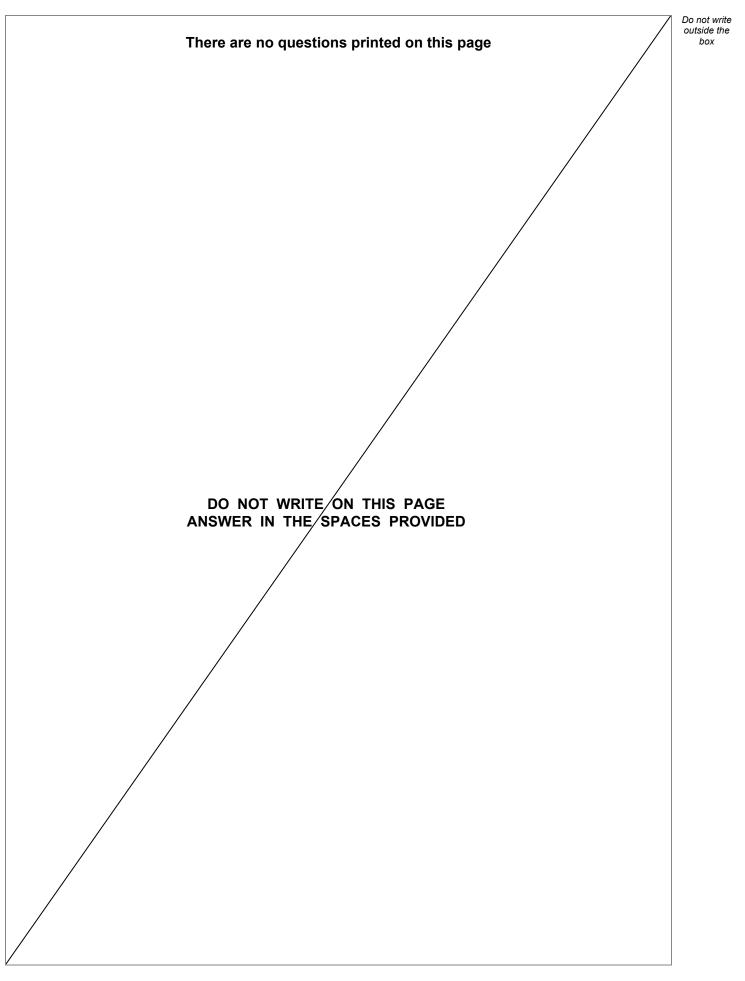
Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

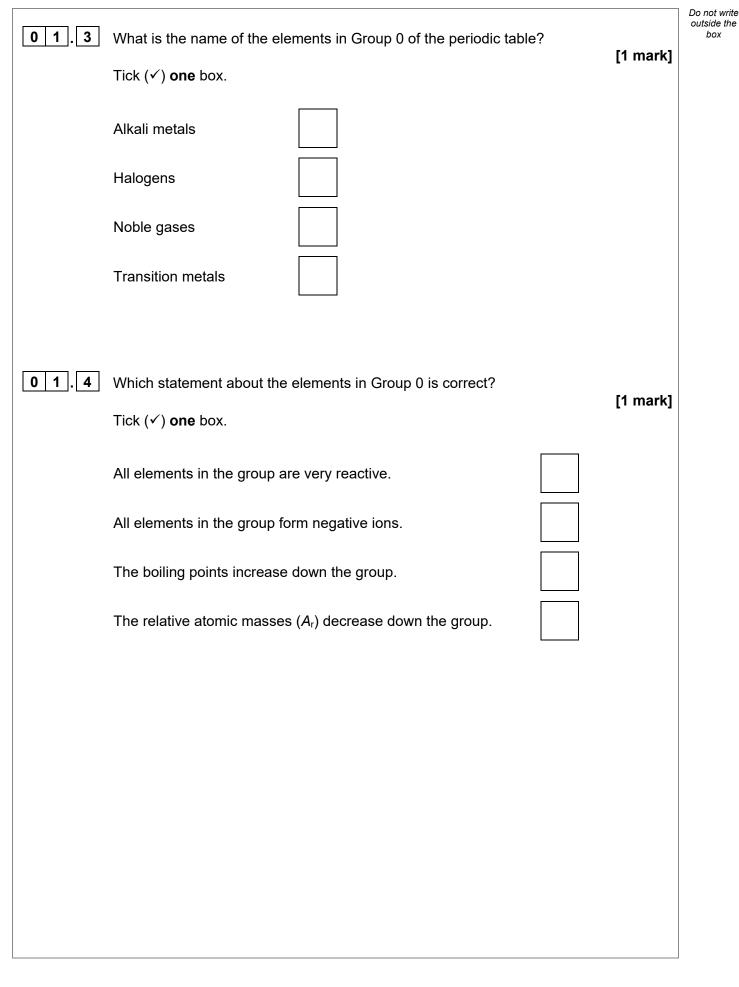
Instructions

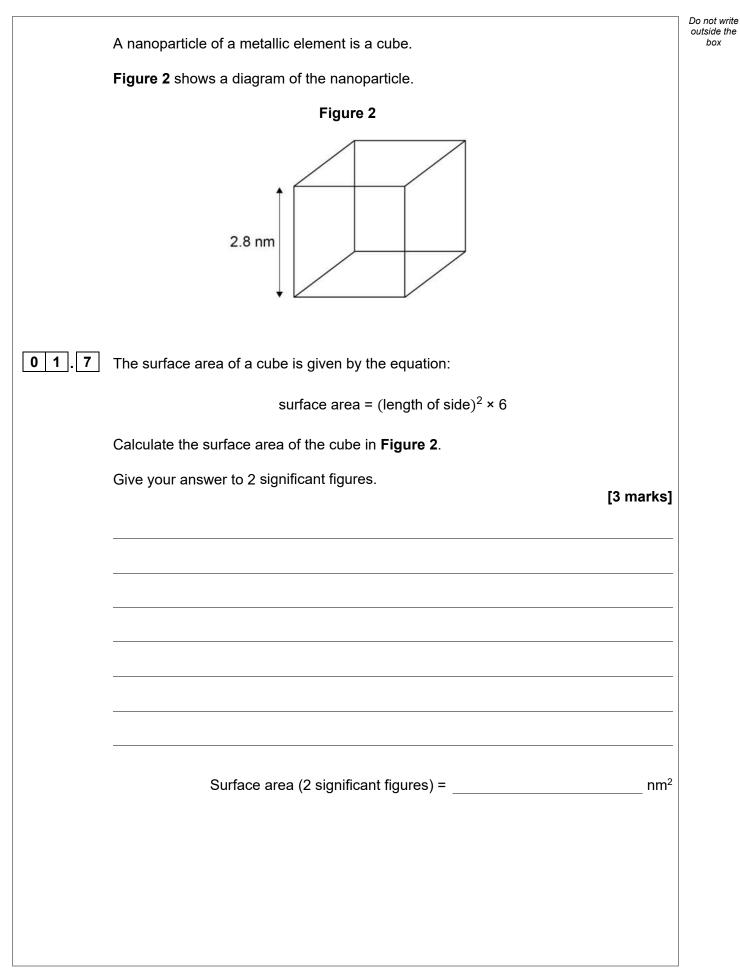
- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.


Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use					
Question	Mark				
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
TOTAL					




		Do not write outside the
0 1	This question is about elements, compounds and mixtures.	box
01.1	Substance A contains only one type of atom.	
	Substance A does not conduct electricity.	
	Which type of substance is A ?	
	[1 mark] Tick (✓) one box.	
	Compound	
	Metallic element	
	Mixture	
	Non-metallic element	
0 1.2	Substance B contains two types of atoms.	
	The atoms are chemically combined together in fixed proportions.	
	Which type of substance is B ? [1 mark]	
	Tick (✓) one box.	
	Compound	
	Metallic element	
	Mixture	
	Non-metallic element	

0 1 5	Neon is in Group 0.	Do not write outside the box
	What type of particles are in a sample of neon?	
	[1 mark] Tick (✓) one box.	
	Atoms	
	lons	
	Molecules	
0 1 . 6	Figure 1 represents part of the structure of an oxide of a metal.	
	Figure 1	
	Key Metal (X) Oxygen (O)	
	Determine the empirical formula of this oxide. [1 mark]	
	Empirical formula = XO	

0 1. **8** Fine and coarse particles of the metallic element are also cubes.

The length of a fine particle cube is 10 times smaller than the length of a coarse particle cube.

How does the surface area to volume ratio of the fine particle cube compare with that of the coarse particle cube?

Tick (✓) one box.

Both surface area to volume ratios are the same.

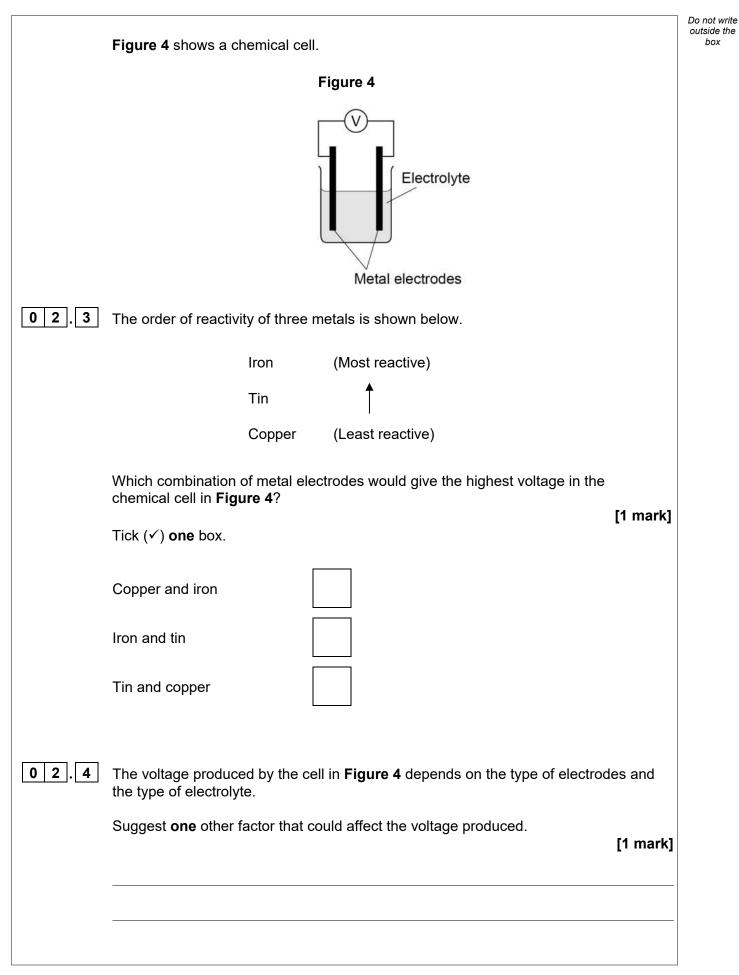
The surface area to volume ratio of the fine particle is 10 times greater.

The surface area to volume ratio of the fine particle is 10 times smaller.

Turn over for the next question

Do not write outside the

box


10

[1 mark]

02	This question is about chem	ical cells and bat	teries.		
02.1	 Three different types of batter Table 1 gives information al 		-	emote control.	
	Table T gives mornation at	Table 1			
		Zinc-carbon battery	Alkaline battery	Nickel- metal hydride battery	
С	Cost of battery in £ (pounds)	0.17	0.50	1.50	
R	Rechargeable?	No	No	Yes	
	ime before needing to replace recharge in months	5	12	8	
	Give one advantage of each type of battery. [3 marks] Zinc-carbon				
	Nickel-metal hydride				
02.2	Figure 3 shows a symbol pr	rinted on batteries	S.		
	This symbol shows that batt	eries should not	be put in house	hold waste.	
	Suggest why batteries shou	ld not be put in h	ousehold wast		[1 mark]

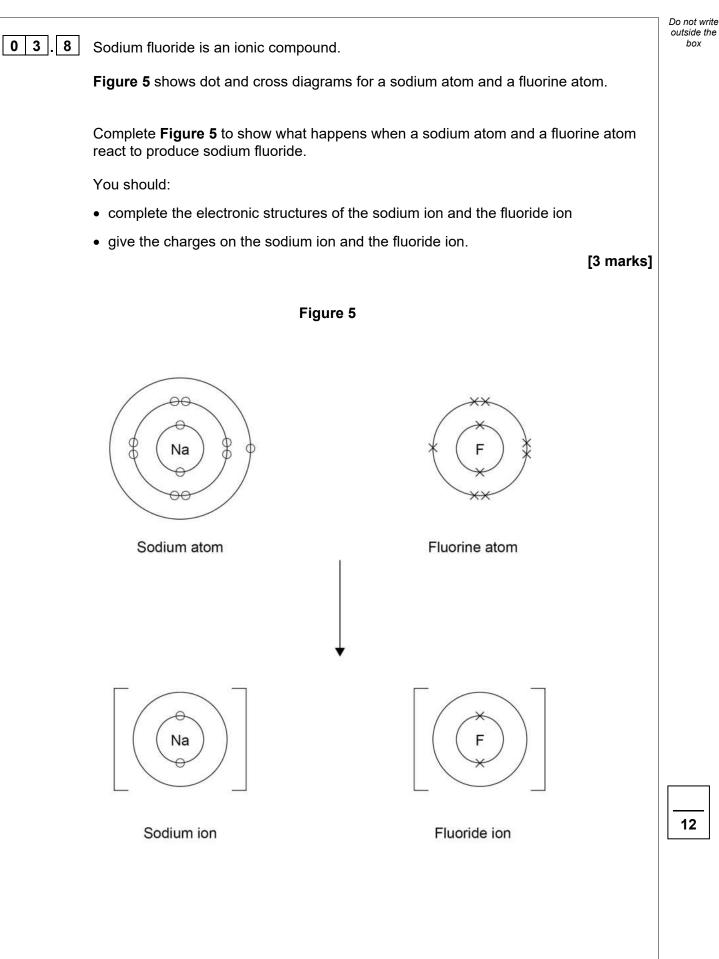
Do not write outside the box

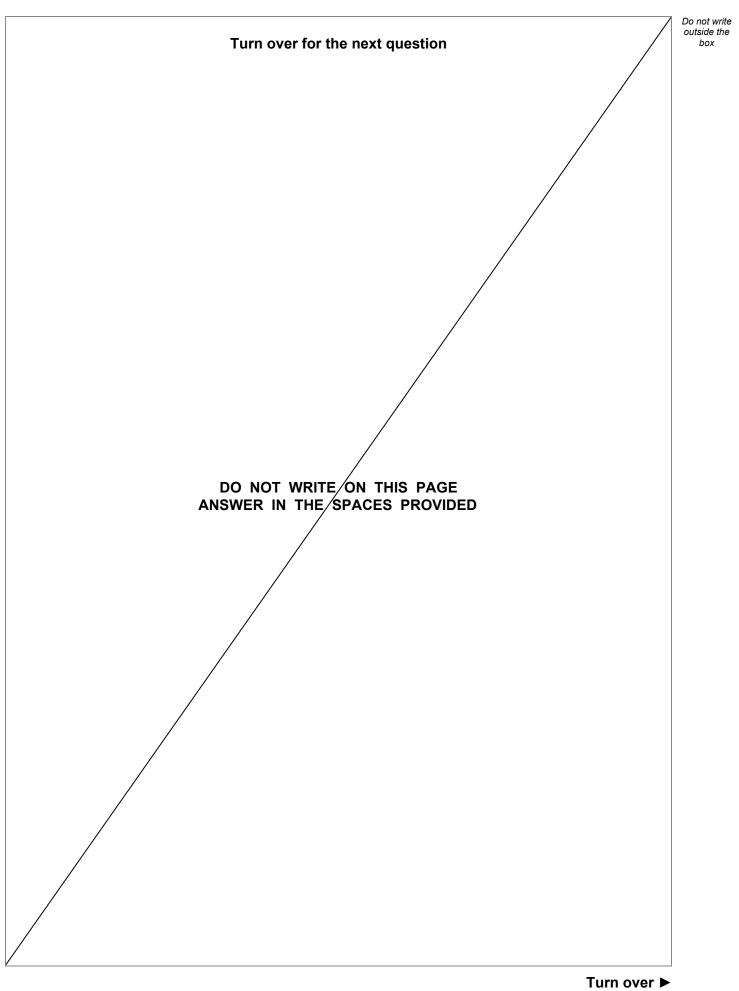
02.5	Water is produced in a hy	drogen fuel cell.		Do not write outside the box
	Complete the word equati fuel cell.	on to show the reaction	that produces water in a	hydrogen
				[2 marks]
		+	\rightarrow water	8
		_ · ·		
				IB/M/Jun21/8462/1F

0 3	This c	nuestion is at	oout Group 1 elements.		
0 3.1	Comp	olete Table 2	to show the electronic st	ructure of a potassium a	atom. [1 mark]
			Table 2		
		Atom	Number of electrons	Electronic structure	
		Sodium	11	2,8,1	
		Potassium	19		
) 3.2	Why o	do Group 1 e	lements have similar che	emical properties?	
		✓) one box.			[1 mark]
	i ion () ••••• ≥•••			-
	They	have the san	ne number of electron sh	ells.	
	They	have the san	ne number of outer shell	electrons.]
	They	have two ele	ctrons in the first shell.		
0 3 . 3	What	is the type of	f bonding in sodium?		
					[1 mark]
	TICK (✓) one box.			
	Coval	lent			
	Ionic				
	Metal	lic			

IB/M/Jun21/8462/1F

Table 3 shows observations made when lithium, potassium and rubidium react with water.


	Element	Observations					
	Lithium	Bubbles slowly Floats Moves slowly					
	Sodium	1 2					
	Potassium	Bubbles very quickly Melts into a ball Floats Moves very quickly Flame					
	Rubidium	Sinks Melts into a ball Explodes with a flame					
03.	0 3. 4 Give two observations you could make when sodium reacts with water. Write your answers in Table 3 .						



03.5	How does the reactivity of the elements change going down Group 1? [1 mark]	Do not writ outside the box
03.6	Give two ways in which the observations in Table 3 show the change in reactivity going down Group 1.	
	[2 marks] 1 2	
03.7	Which gas is produced when Group 1 elements react with water? [1 mark] Tick (✓) one box. Carbon dioxide Hydrogen	
	Nitrogen Oxygen	

Do not write outside the box

16

A student investigated the reactivity of metals with hydrochloric acid.

This is the method used.

- 1. Measure 50 cm³ of hydrochloric acid into a polystyrene cup.
- 2. Measure the temperature of the hydrochloric acid.
- 3. Add one spatula of metal powder to the hydrochloric acid and stir.
- 4. Measure the highest temperature the mixture reaches.
- 5. Calculate the temperature increase for the reaction.
- 6. Repeat steps 1 to 5 three more times.
- 7. Repeat steps 1 to 6 with different metals.

Table 4 shows the student's results.

Table 4

Metal	Temp	perature	Mean		
Wetai	Trial 1	Trial 2	Trial 3	Trial 4	temperature increase in °C
Cobalt	6	7	5	9	7
Magnesium	54	50	37	55	x
Zinc	18	16	18	20	18

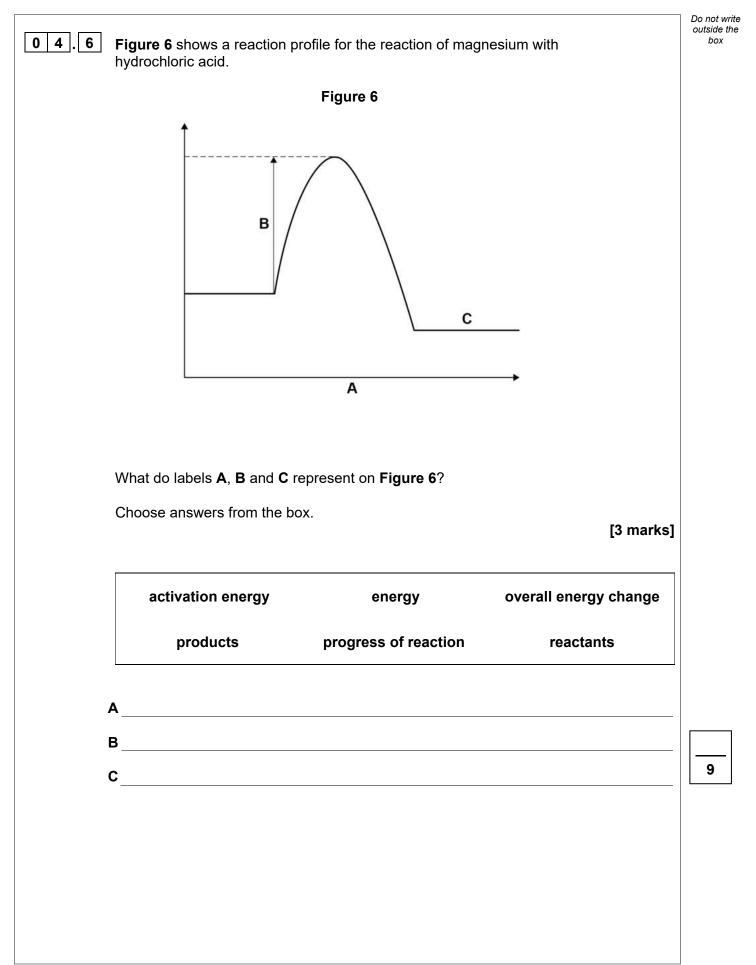
0 4 . 1

0 4

Calculate the mean temperature increase **X** for magnesium in **Table 4**.

Do **not** include the anomalous result in your calculation.

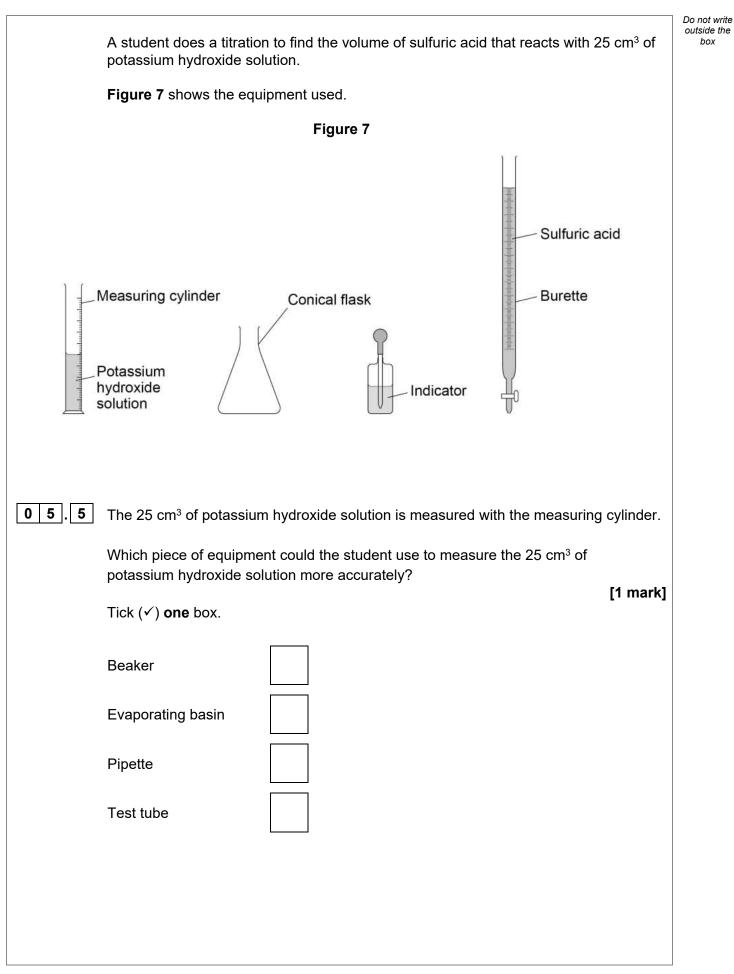
[2 marks]



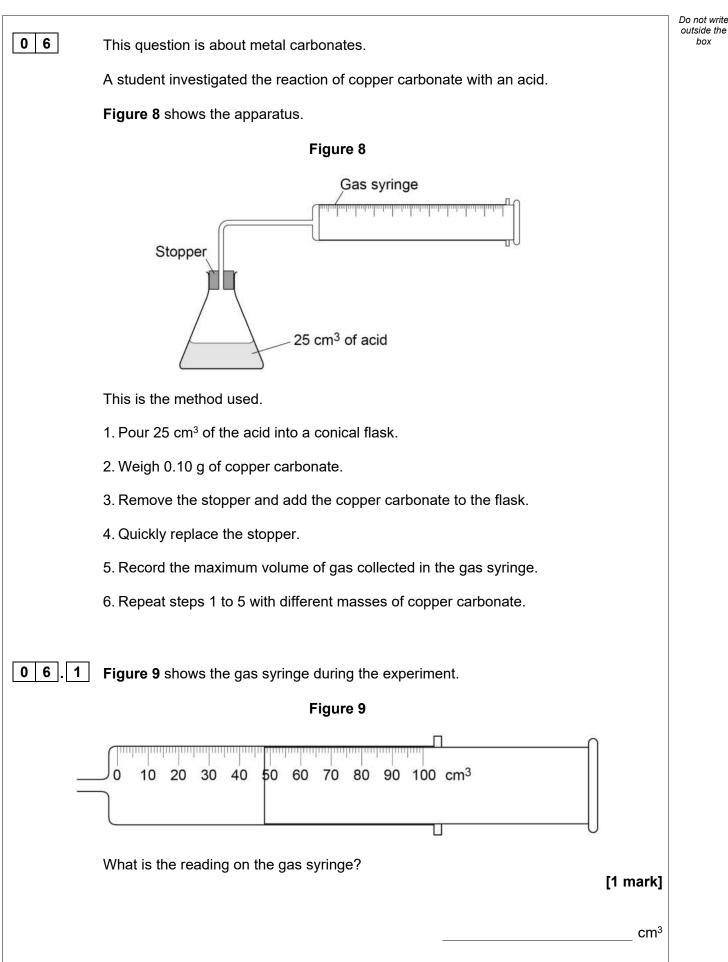
°C

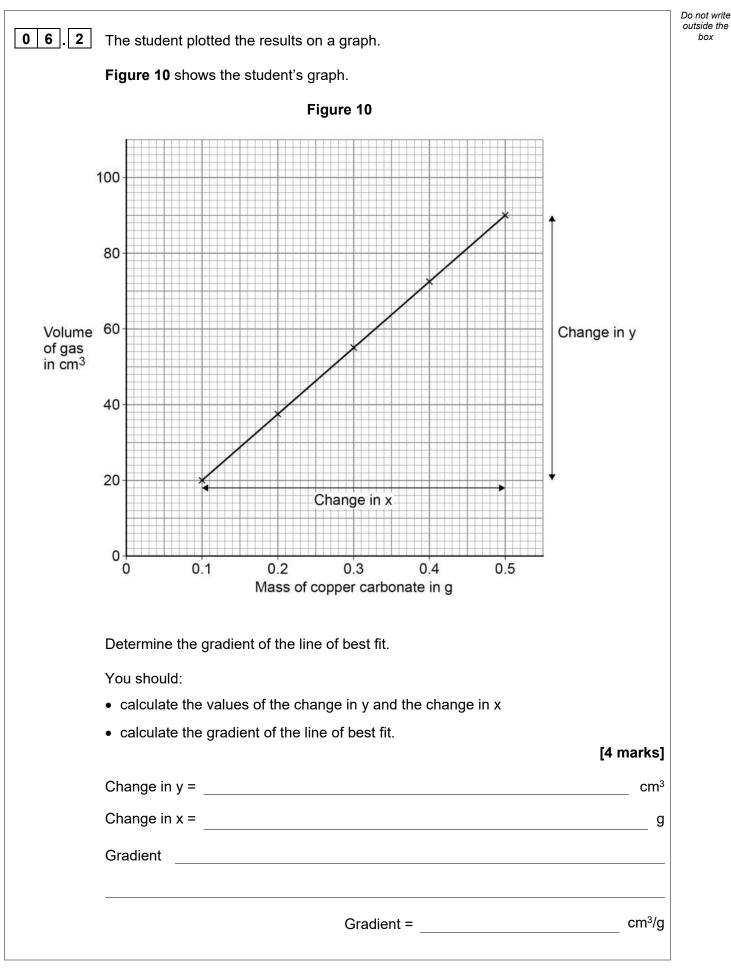
X =

04.2	Determine the order of reactivity for the metals cobalt, magnesium and zinc.	Do not write outside the box
	Use Table 4. [1 mark]	
	Most reactive	
	Least reactive	
04.3	The range of measurements either side of the mean shows the uncertainty in the mean temperature increase.	
	Complete the sentence.	
	Use Table 4. [1 mark]	
	The mean temperature increase for zinc is 18 ±°C	
04.4	What type of variable is the volume of hydrochloric acid in this investigation? [1 mark] Tick (✓) one box.	
	Control	
	Dependent	
	Independent	
04.5	Suggest one way of improving step 3 in the method to give results which are more repeatable.	
	[1 mark]	

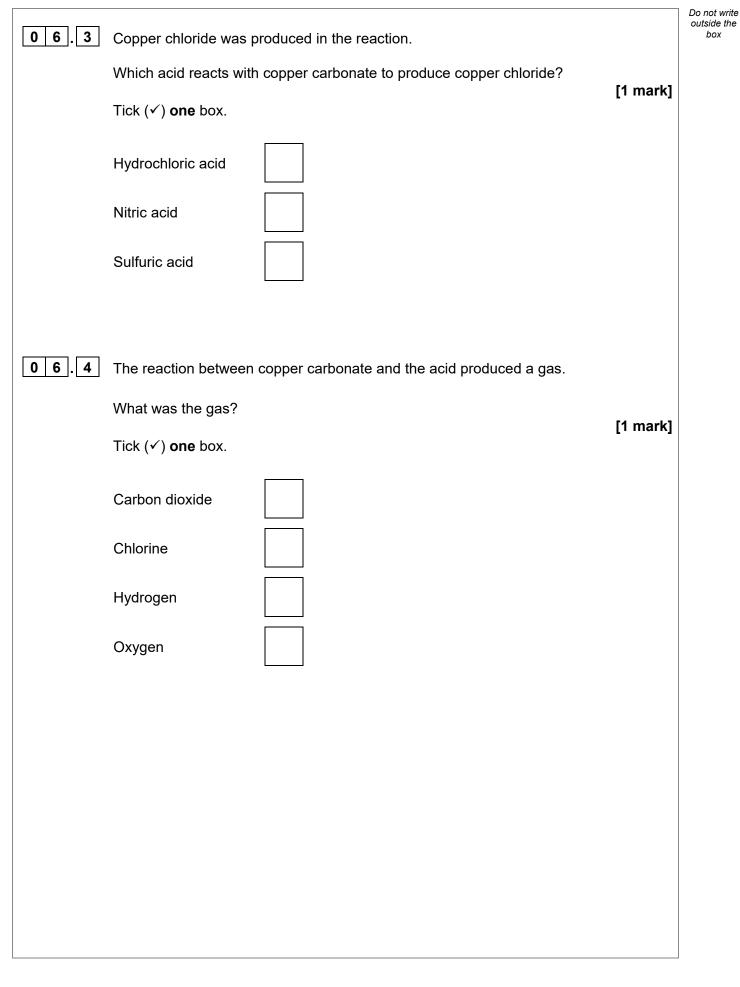


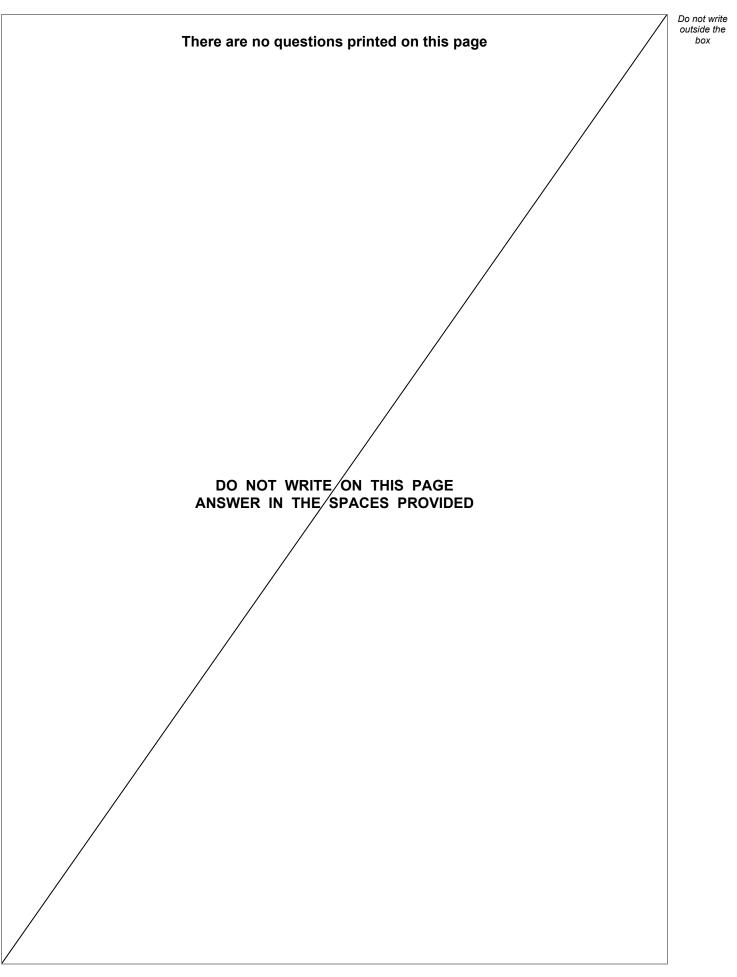
0 5	This question is about acids and alkalis.	Do not writ outside the box
0 5 1	Which ion do acids produce in aqueous solution?	
	[1 mark] Tick (✓) one box.	
	H ⁺ OH ⁻ O ²⁻	
0 5.2	Acids react with alkalis.	
	What is the name of this type of reaction? [1 mark]	
	Tick (\checkmark) one box.	
	Decomposition	
	Electrolysis	
	Neutralisation	
	Redox	
0 5.3	Balance the equation for the reaction between sulfuric acid and potassium hydroxide. [1 mark]	
	$H_2SO_4 + \underline{\qquad} KOH \rightarrow K_2SO_4 + \underline{\qquad} H_2O$	
0 5.4	Universal indicator turns purple in potassium hydroxide solution.	
	What is the pH of the solution? [1 mark]	
	Tick (✓) one box.	
	1 4 7 14	
	Turn over ►	





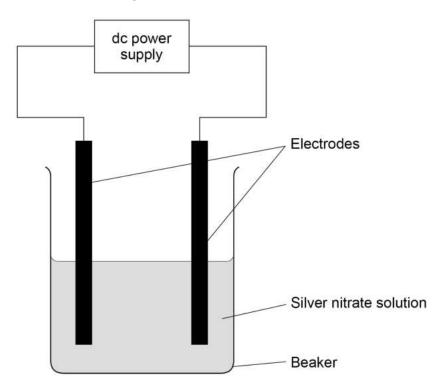
0 5.6	Describe how the student would use the equipment in Figure 7 to complete the titration.		Do not write outside the box
		[5 marks]	
			10
	Turn over for the next question		
		Turn over ►	




IB/M/Jun21/8462/1F

		Do not write
	A different student produced a pure, dry sample of copper chloride using the same reaction.	outside the box
	This is the method used.	
	1. Add excess copper carbonate to the acid.	
	2. Filter the mixture.	
	3. Heat the solution gently until crystals start to form.	
	4. Leave for 24 hours.	
	5. Remove the crystals.	
	6. Rinse with water and dry the crystals.	
0 6 5	Why was the solution heated gently in step 3 ?	
	[1 mark] Tick (✓) one box.	
	To evaporate acid	
	To evaporate copper carbonate	
	To evaporate water	
0 6.6	How should the solution be heated gently in step 3 ?	
	[1 mark]	
		9

IB/M/Jun21/8462/1F


0 7 This question is about electrolysis.

Some students investigated the electrolysis of silver nitrate solution.

This electrolysis produces silver at the negative electrode.

Figure 11 shows the apparatus.

This is the method used.

- 1. Weigh the negative electrode.
- 2. Set up the apparatus shown in Figure 11.
- 3. Switch on the power supply.
- 4. Switch off the power supply after five minutes.
- 5. Rinse the negative electrode with water and allow to dry.
- 6. Reweigh the negative electrode.
- 7. Repeat steps 1 to 6 for different times.

Turn over ►

Do not write outside the

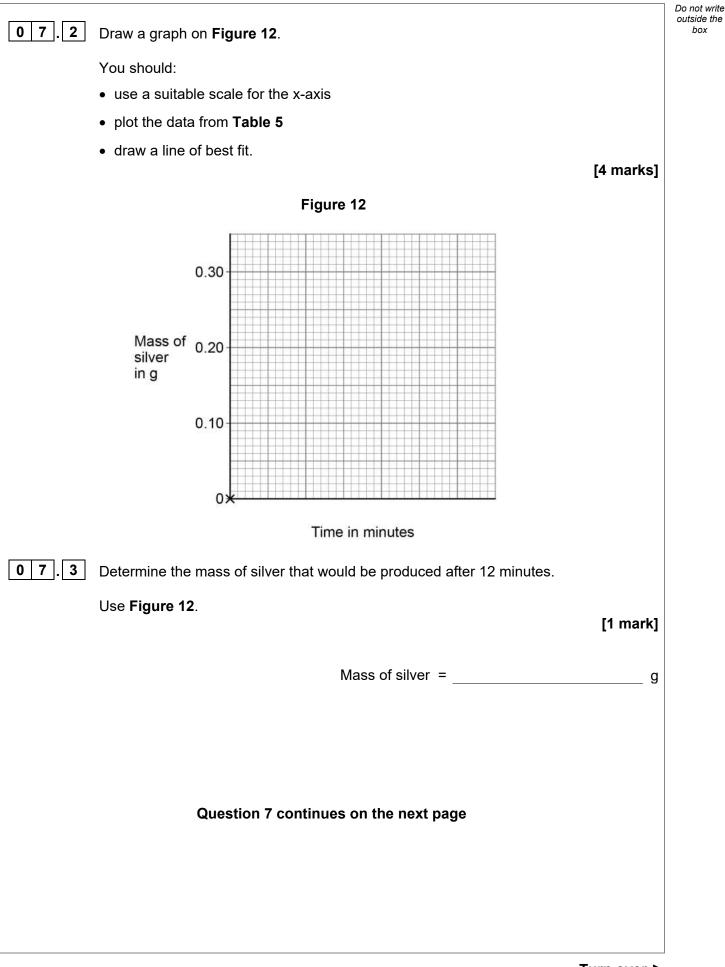
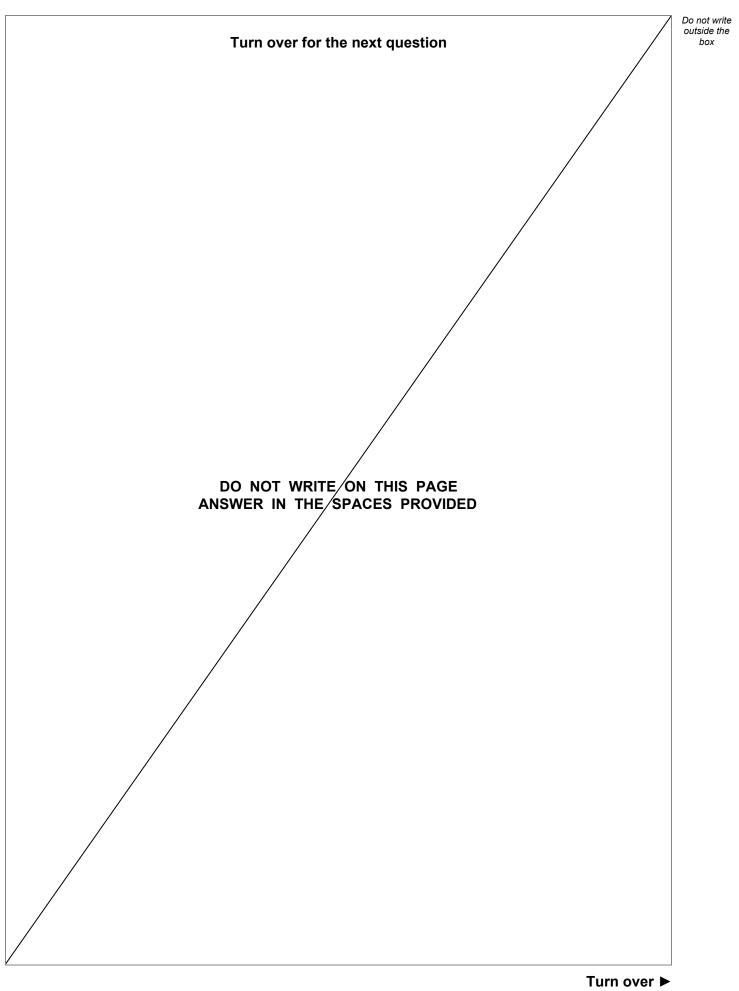
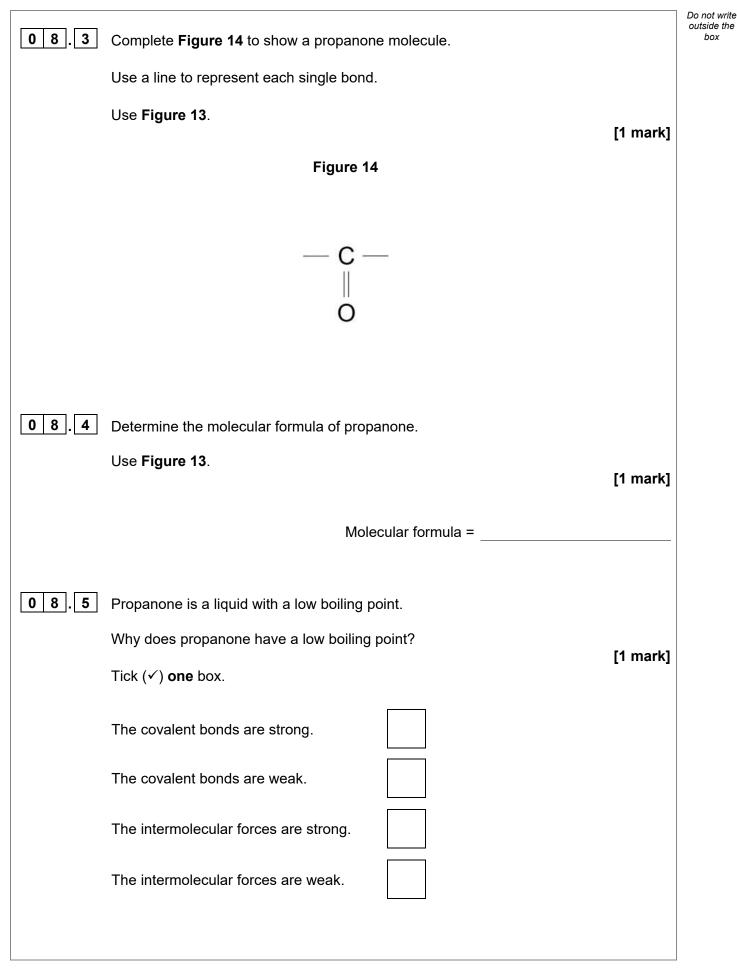
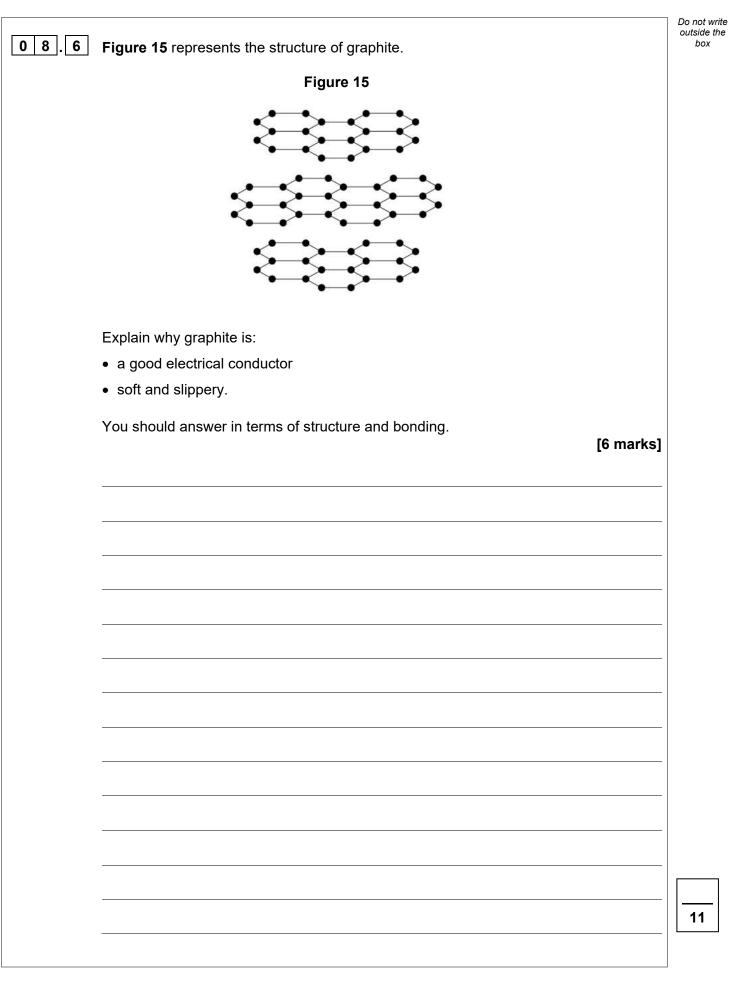

0 7 . 1 Some silver did not stick to the negative electrode but fell to the bottom of the beaker. The students needed to weigh this silver. How could the students separate the silver from the silver nitrate solution? Tick (✓) one box. By chromatography By crystallisation By distillation By filtration

Table 5 shows the students' results.

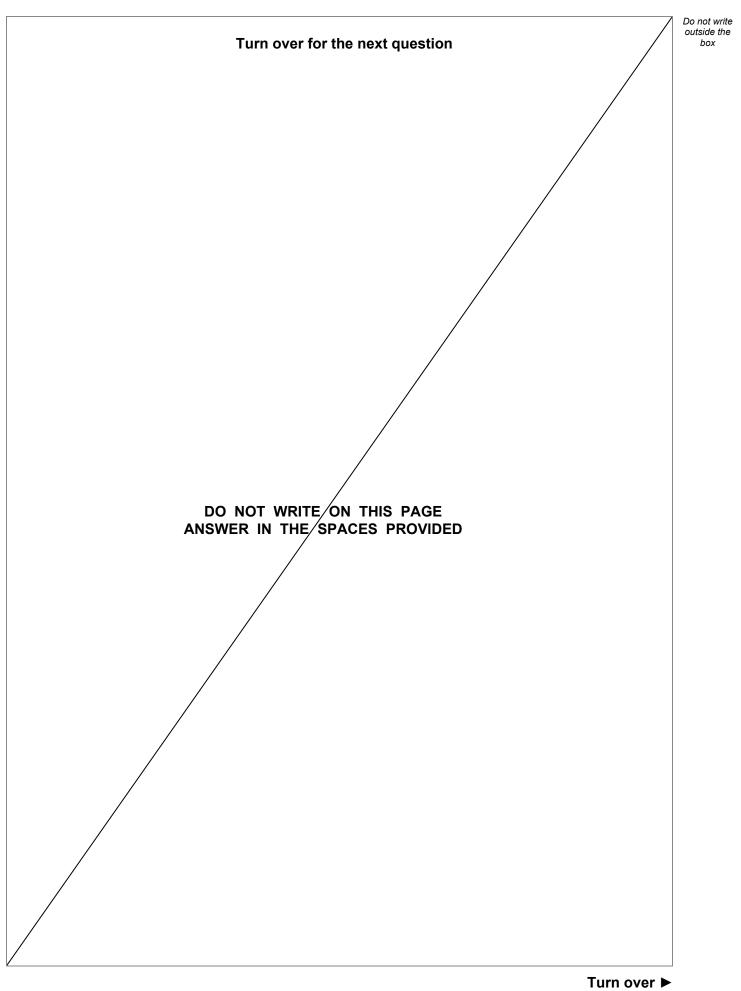
Table 5


Time in minutes	Mass of silver in g
0	0.00
5	0.06
10	0.12
15	0.18
20	0.24
25	0.30


0 7	7.4 A student ir	nvestigated the ele	ctrolysis of two aqueous s	alt solutions.	Do not outside box	e the
		s produced at the r ve than hydrogen.	negative electrode when th	e metal in the salt solution	on is	
	Complete 1 for each sa		nat the student would obse	rve at the negative elect	rode	
				[2 m	arks]	
			Table 6			
	Salt solution	C	Observation at negative e	lectrode		
	Copper sulfate					
	Sodium chloride					
L		1			1	
0 7	7.5 A teacher of	lemonstrates the e	lectrolysis of molten lead b	promide.		
	The produc	ts at the electrode	s are lead and bromine.			
	Why should	d the teacher do the	e demonstration in a fume		mark]	
0 7	7.6 Two other r	nolten compounds	are electrolysed.			
	Complete 1	able 7 to show the	e molten compounds and t	he products.		
				[3 m	arks]	
			Table 7			
	Molten compound	d electrolysed	Product at the negative electrode	Product at the positive electrode		
	Zinc chloride					٦
			Potassium	lodine	12	-
	L					



	Do not
This question is about carbon and its compounds.	Do not write outside the box
Fullerenes are molecules of carbon atoms.	
The first fullerene to be discovered was Buckminsterfullerene (C ₆₀).	
What shape is a Buckminsterfullerene molecule? [1 mark]	
Give one use of a fullerene. [1 mark]	
Propanone is a compound of carbon, hydrogen and oxygen.	
Figure 13 shows the dot and cross diagram for a propanone molecule.	
Figure 13	
H H C C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C C H C C C H C C C H C C C C H C	
	Fullerenes are molecules of carbon atoms. The first fullerene to be discovered was Buckminsterfullerene (Ceo). What shape is a Buckminsterfullerene molecule? [1 mark] Give one use of a fullerene. [1 mark] Propanone is a compound of carbon, hydrogen and oxygen. Figure 13 shows the dot and cross diagram for a propanone molecule. Figure 13 Image: Propanone is a compound of carbon, hydrogen and oxygen. Figure 13



09	-		structure and the periodic table. nat has two isotopes.	
09.1	Give the mear	ning of 'isotope	s'.	
	You should ar	nswer in terms o	of subatomic particles.	[2 marks]
09.2	Table 8 shows isotopes of ga		nbers and percentage abundances	of the
			Table 8	
	Μ	lass number	Percentage abundance (%)	
		69	60	
		71	40	
			mass (A _r) of gallium.	
	Give your ans	wer to 1 decima	al place.	[2 marks]
			c mass (1 decimal place) =	

	Gallium (Ga) is in Group 3 of the modern periodic table.	Do not write outside the box
09.3	Give the numbers of electrons and neutrons in an atom of the isotope ⁶⁹ ₃₁ Ga [2 marks]	
	Number of electrons	
	Number of neutrons	
09.4	What is the most likely formula of a gallium ion? [1 mark] Tick (✓) one box.	
	Ga⁺	
	Ga⁻	
	Ga ³⁺	
	Ga ^{3_}	
09.5	Gallium was discovered six years after Mendeleev published his periodic table.	
	Give two reasons why the discovery of gallium helped Mendeleev's periodic table to become accepted.	
	[2 marks]	
	2	
		9
		I

		Do not write outside the
1 0	This question is about the extraction of metals.	box
	Element R is extracted from its oxide by reduction with hydrogen.	
	The equation for the reaction is:	
	$3 H_2 + \mathbf{R}O_3 \rightarrow \mathbf{R} + 3 H_2O$	
10.1	The sum of the relative formula masses (M_r) of the reactants (3 H ₂ + R O ₃) is 150	
	Calculate the relative atomic mass (A_r) of R .	
	Relative atomic masses (A_r): H = 1 O = 16	
	[2 marks]	
	Relative atomic mass (<i>A</i> _r) of R =	
	$\frac{1}{1} = \frac{1}{1}$	
10.2	Identify element R .	
	You should use:	
	 your answer to question 10.1 	
	 the periodic table. 	
	[1 mark]	
	Identity of R =	

IB/M/Jun21/8462/1F

1 0.3	Carbon is used to extract tin (Sn) from tin oxide (SnO ₂).	Do no outsia bo
	The equation for the reaction is:	
	SnO_2 + C \rightarrow Sn + CO ₂	
	Calculate the percentage atom economy for extracting tin in this reaction.	
	Relative atomic masses (A_r): C = 12 O = 16 Sn = 119 [3 mark	s]
		_
		_
	Percentage atom economy =	%
	Question 10 continues on the next page	
	Turn over	

1 0 . 4 Tungsten (W) is a metal.

Tungsten is extracted from tungsten oxide (WO₃).

All other solid products from the extraction method must be separated from the tungsten.

Table 9 shows information about three possible methods to extract tungsten from tungsten oxide.

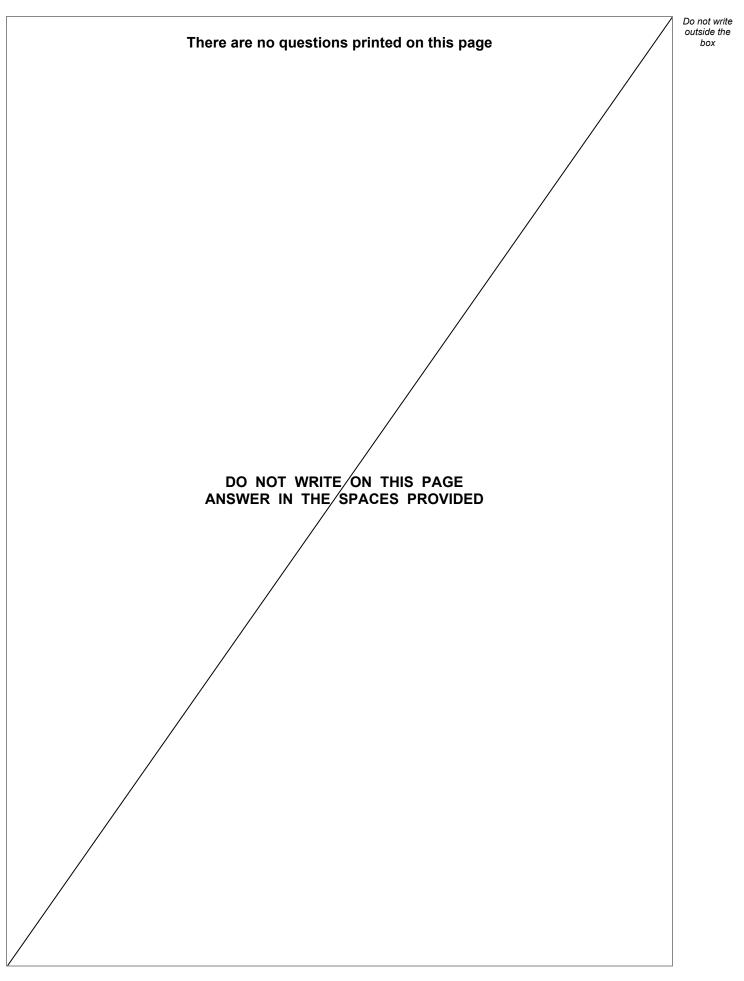

Method	Reactant	Relative cost of reactant	Products	
			Tungsten solid	
1	Carbon	Low	Carbon dioxide gas	
			Tungsten carbide solid	
0	Ludragan	High	Tungsten solid	
2	Hydrogen	High	Water vapour	
3	Iron		Tungsten solid	
3	Iron	Low	Iron oxide solid	

Table 9

Evaluate the three possible methods for extracting tungsten from tungsten oxide. [4 marks]

10

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2021 AQA and its licensors. All rights reserved.

