AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature

> I declare this is my own work.

GCSE PHYSICS

Foundation Tier

Wednesday 20 May 2020

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100 .

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

| 0 | 1 |
| :--- | :--- | Figure 1 shows how the National Grid connects power stations to consumers.

Figure 1

0	1	1
1	Name the parts of the National Grid labelled K, L and M.	

$K=$ \qquad
$\mathrm{L}=$ \qquad
$M=$ \qquad

Figure 2 shows how the percentage of electricity generated by gas-fired power stations changed in the UK over 5 years.

Figure 2

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ Calculate how many times greater the percentage of electricity generated by gas-fired |
| :--- | :--- | :--- | :--- | power stations was in 2018 than in 2014.

\qquad
\qquad
\qquad
Number of times greater = \qquad
$\begin{array}{llll}\mathbf{0} & \mathbf{1} & \mathbf{3} \text { Explain one environmental effect of generating electricity using a gas-fired power }\end{array}$ station.
\qquad
\qquad
\qquad
\qquad

| 0 | 1 |
| :--- | :--- | .4 The UK government wants more electricity to be generated using renewable energy resources.

What is a renewable energy resource?
Tick (\checkmark) one box.

An energy resource that can be burned

An energy resource that can be recycled

An energy resource that can be replenished quickly

An energy resource that can be reused

Question 1 continues on the next page

Figure 3 shows the power output of an offshore wind farm compared with a wind farm on land for a 24 -hour period.

Figure 3

Give two advantages of the offshore wind farm compared with the wind farm on land. Use information from Figure 3.

1 \qquad
\qquad
2 \qquad
\qquad

Do not write outside the box

| 0 | 2 |
| :--- | :--- | Figure 4 shows a theme park ride called AquaShute.

Figure 4

0	2	1
1	Riders of the AquaShute sit on a sled and move down a slide.	

There is a layer of water between the sled and the slide.
How does the layer of water affect the friction between the sled and the slide?
Tick (\checkmark) one box.

The friction is decreased.
\square

The friction is increased.

The friction is not affected.
\square
\square

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{2}$ The mass of one rider is 62.5 kg .

The height of the slide is 16.0 m .
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
Calculate the gravitational potential energy of the rider at the top of the slide.
Use the equation:
gravitational potential energy $=$ mass \times gravitational field strength \times height
[2 marks]
\qquad
\qquad
\qquad
\qquad
Gravitational potential energy = J

$\mathbf{0}$	$\mathbf{2}$.	3	At the bottom of the slide the speed of the rider is $12 \mathrm{~m} / \mathrm{s}$.

The mass of the rider is 62.5 kg .
Calculate the kinetic energy of the rider at the bottom of the slide.
Use the equation:

$$
\text { kinetic energy }=0.5 \times \text { mass } \times(\text { speed })^{2}
$$

\qquad
\qquad
\qquad
\qquad
Kinetic energy = \qquad J

Give two factors that will affect how far the sled will move before it stops.
Do not write outside the box
[2 marks]
1 \qquad
\qquad
2 \qquad

Do not write outside the box

0	3

Figure 5

Live wire \qquad 0

| $\mathbf{0}$ | $\mathbf{3} .1$ What is the frequency of the ac mains electricity supply in the UK? |
| :--- | :--- | :--- | Tick (\checkmark) one box.

$20 \mathrm{~Hz} \square$
$50 \mathrm{~Hz} \square$
$60 \mathrm{~Hz} \square$
100 Hz \square

Which diagram shows an alternating potential difference?
Tick (\checkmark) one box.

\square

\square

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{3}$ The potential difference across the lamp is 230 V0

The current in the lamp is 0.020 A .
Calculate the power output of the lamp.
Use the equation:

$$
\text { power }=\text { potential difference } \times \text { current }
$$

\qquad
\qquad
\qquad
Power = \qquad W

Calculate the energy transferred by the lamp when 180 C of charge flows through the lamp.

Use the equation:

$$
\text { energy transferred }=\text { charge flow } \times \text { potential difference }
$$ -

\qquad
\qquad
\qquad
Energy transferred = \qquad J

0	$\mathbf{3}$	$\mathbf{5}$ An electrician needs to replace the light switch in Figure 5.

Describe the possible hazard and the risk to the electrician of changing the light switch.

Hazard \qquad
\qquad
Risk \qquad
\qquad

| 0 | $\mathbf{4}$ | A student investigated how the total resistance of identical resistors connected in |
| :--- | :--- | :--- | series varied with the number of resistors.

The student used an ohmmeter to measure the total resistance of the resistors.
Figure 6 shows the student's circuit with 3 resistors.
Figure 6

The student repeated each reading of resistance three times.
Table 1 shows the student's results for 3 resistors in series.
Table 1

Number of resistors	Total resistance in Ω			
	Reading 1	Reading 2	Reading 3	Mean
3	35.9	36.0	36.1	36.0

0	$\mathbf{4}$	$\mathbf{1}$ Calculate the mean resistance of 1 resistor.

\qquad
\qquad
\qquad
Resistance $=$ \qquad Ω

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{2}$ What was the resolution of the ohmmeter the student used?

Tick (\checkmark) one box.
$0.1 \Omega \square$
$0.2 \Omega \square$
$1.1 \Omega \square$
36.0Ω

| 0 | $\mathbf{4}$. | $\mathbf{3}$ How do the results show that the student's measurements were precise? |
| :--- | :--- | :--- | :--- |

The measurements are accurate.

The measurements are grouped closely together. \square
The measurements are reproducible. \square

Question 4 continues on the next page

Figure 7 shows the results.
Figure 7

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{4}$ How do the results show that the total resistance is directly proportional to the number |
| :--- | :--- | :--- | :--- | of resistors?

Tick (\checkmark) one box.

The results give a line with a positive gradient.

The results give a straight line that would go through the origin. \square

The results show a linear relationship. \square

| 0 | $\mathbf{4} .5$ | Predict the mean total resistance of 7 resistors. |
| :--- | :--- | :--- | :--- |

Use Figure 7.

Mean total resistance of 7 resistors $=$ Ω

0	$\mathbf{4}$	6

When more resistors are added in series, the total resistance increases.
Complete the sentences.
Choose answers from the box.
Each answer may be used once, more than once or not at all.

decreases	increases	remains the same

When the number of resistors increases, the potential difference across each
resistor \qquad .

When the number of resistors increases, the current in the circuit \qquad . .
decreases
increases
remains the same -

Turn over for the next question

| 0 | 5 |
| :--- | :--- | Radioactive waste from nuclear power stations is a man-made source of background radiation.

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{1}$ Which of the following is also a man-made source of background radiation?

Tick (\checkmark) one box.
cosmic rays

radiotherapy

rocks

stars

| 0 | 5 | 2 |
| :--- | :--- | :--- | Nuclear power stations use the process of nuclear fission.

Complete the sentences to describe the process of nuclear fission.
Choose answers from the box.

a neutron	a proton	an electron
cosmic rays	energy	gamma rays

An unstable nucleus absorbs \qquad and splits into two parts.

Two or three neutrons are released, as well as \qquad and \qquad .

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{3}$ Plutonium-239 is one type of radioactive waste from nuclear power stations.

The following nuclear equation represents the decay of plutonium-239 (Pu-239).

$$
{ }_{94}^{239} \mathrm{Pu} \rightarrow{ }_{92}^{235} \mathrm{U}+{ }_{2}^{4} \mathrm{He}
$$

How does the nuclear equation show that alpha radiation is emitted when plutonium-239 decays?

Tick (\checkmark) one box.

An alpha particle contains 92 protons. \square

An alpha particle has a mass number of 235 . \square
An alpha particle is the same as a helium nucleus. \square

Figure 8 shows how the activity of a sample of plutonium- 239 varies with time.
Figure 8

| 0 | 5 | 4 | H |
| :--- | :--- | :--- | :--- | to half of its initial activity?

Time $=$ \qquad years

0	5	5
$\mathbf{5}$		

Half-life = \qquad years

0	5	6	The radioactive waste from a nuclear power station is buried underground.

People are warned to stay away from places where radioactive waste is buried.
Suggest one risk of going near the place where radioactive waste is buried.
[1 mark]
\qquad
\qquad
\qquad

| 0 | 6 | A student used the equipment in Figure 9 to investigate how the pressure of a gas |
| :--- | :--- | :--- | varies with the volume of the gas.

Figure 9

The syringe is filled with air.
Table 2 shows the results.
Table 2

Volume in cm	
	3
24	Pressure in kPa
20	100
12	120
10	200

0	6	1
1		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	6	2
	Describe what happens to the pressure of the air when the volume of the air	

\qquad
\qquad
\qquad
\qquad

Question 6 continues on the next page

| 0 | $\mathbf{6}$. | $\mathbf{3}$ The temperature of the air in the syringe remained constant during the student's |
| :--- | :--- | :--- | investigation.

Which two properties of the air particles would change if the temperature increased? [2 marks]
Tick (\checkmark) two boxes.
Do not write outside the
kinetic energy

mass
shape

speed

volume

$\mathbf{0}$	$\mathbf{7}$	A student heated water in an electric kettle.

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | Water has a high specific heat capacity.

Complete the sentence.
Choose answers from the box.

The specific heat capacity of a substance is the energy needed to raise the temperature of 1 \qquad of the substance by 1 \qquad .

| 0 | 7 | 2 |
| :--- | :--- | :--- | water reaches $100^{\circ} \mathrm{C}$.

What is the correct symbol for a thermistor?
Tick (\checkmark) one box.

\square
\square
\square

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{3}$ The resistance of the heating element in the kettle is 15Ω.

The current in the heating element is 12 A .
Calculate the power of the heating element.
Use the equation:

$$
\text { power }=(\text { current })^{2} \times \text { resistance }
$$

\qquad
\qquad
\qquad
\qquad
\qquad
Power = W

Question 7 continues on the next page

The student investigated how quickly the kettle could increase the temperature of 0.50 kg of water.

Figure 10 shows the results of the investigation.
Figure 10

| $\mathbf{0}$ | $\mathbf{7} .4$ | The temperature of the water did not start to increase until 10 seconds after the kettle |
| :--- | :--- | :--- | was switched on.

What is the reason for this?
Tick (\checkmark) one box.

Energy is transferred from the surroundings to the kettle.

The charge flows slowly through the kettle circuit.

The heating element in the kettle takes time to heat up.

The power output of the kettle increases slowly.

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{5}$ Describe a method the student could have used to obtain the results shown in |
| :--- | :--- | :--- | Figure 10.

\qquad

Question 7 continues on the next page

0	$\mathbf{7}$.	6

The temperature of the water increased from $20^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.
specific heat capacity of water $=4200 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$
Calculate the energy transferred to the water.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
Energy = \qquad J

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{7}$ | The water in the kettle boiled for a short time before the kettle switched off. |
| :--- | :--- | :--- | :--- | During this time 5.0 g of water changed to steam. specific latent heat of vaporisation of water $=2260000 \mathrm{~J} / \mathrm{kg}$ Calculate the energy transferred to change the water to steam.

Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
Energy = \qquad

| 0 | 8 | A student investigated how the current in a filament lamp varied with the potential |
| :--- | :--- | :--- | difference across the filament lamp.

Figure 11 shows part of the circuit used.
Figure 11

0	8	1

Use the correct circuit symbols.

Figure 12 shows some of the results.
Figure 12

| 0 | 8 |
| :--- | :--- | $\mathbf{2}$ The student reversed the connections to the power supply and obtained negative values for the current and potential difference.

Draw a line on Figure 12 to show the relationship between the negative values of current and potential difference.

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{3}$ Write down the equation which links current (I), potential difference (V) and |
| :--- | :--- | :--- | :--- | resistance (R).

| $\mathbf{0}$ | $\mathbf{8}$. | $\mathbf{4}$ Determine the resistance of the filament lamp when the potential difference across it |
| :--- | :--- | :--- | is 1.0 V .

Use data from Figure 12.
\qquad
\qquad
\qquad
\qquad
Resistance $=$ \qquad Ω
 What is meant by a zero error?
\qquad

Turn over for the next question

0	9	Figure 13 shows an LED torch.

Figure 13

$\mathbf{0}$	$\mathbf{9} .1$	The torch contains one LED, one switch and three cells.

Which diagram shows the correct circuit for the torch?
Tick (\checkmark) one box.

\square
\square
\square

The current in the LED was 50 mA .
Calculate the total charge flow through the cells.
\qquad
\qquad
\qquad
\qquad
Total charge flow = C

0	$\mathbf{9} .4$	When replaced, the cells were put into the torch the wrong way around.

Explain why the torch did not work.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 9 continues on the next page

| 0 | 9 | $\mathbf{5}$ Write down the equation which links efficiency, total power input and useful power |
| :--- | :--- | :--- | :--- | output.

\qquad
\qquad

0	$\mathbf{9}$	6	The total power input to the LED was 0.24 W .

The efficiency of the LED was 0.75
Calculate the useful power output of the LED.
\qquad
\qquad
\qquad
\qquad
Useful power output = \qquad w

| 1 | 0 |
| :--- | :--- |\quad Figure 14 shows a hydroelectric power station.

Figure 14

Electricity is generated when water from the reservoir flows through the turbines.

The density of the water is $998 \mathrm{~kg} / \mathrm{m}^{3}$.
Calculate the mass of water in the reservoir.
Give your answer in standard form.
\qquad
\qquad
\qquad
\qquad
\qquad
Mass (in standard form) $=$ \qquad kg

$\mathbf{1}$	$\mathbf{0}$.3	$\mathbf{3}$

\qquad

| 1 | 0 | 4 |
| :--- | :--- | :--- | The electrical generators can provide $1.5 \times 10^{9} \mathrm{~W}$ of power for a maximum of 5 hours. Calculate the maximum energy that can be transferred by the electrical generators. [3 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
Energy transferred = \qquad J

Question 10 continues on the next page

| 1 | $\mathbf{0}$. | $\mathbf{5}$ Figure 15 shows how the UK demand for electricity increases and decreases during |
| :--- | :--- | :--- | one day.

Figure 15

The hydroelectric power station in Figure 14 can provide $1.5 \times 10^{9} \mathrm{~W}$ of power for a maximum of 5 hours.

Give two reasons why this hydroelectric power station is not able to meet the increase in demand shown between 04:00 and 16:00 in Figure 15.

1
\qquad
\qquad
2 \qquad
\qquad

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	...

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE/SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

