AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

GCSE

Foundation Tier Paper 1

Thursday 14 May 2020
Morning
Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

- The maximum mark for this paper is 100 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

0	1	This question is about the elements in Group 7 of the periodic table.

Table 1 shows the melting points and boiling points of some of the elements.
Table 1

Element	Melting point in ${ }^{\circ} \mathbf{C}$	Boiling point in ${ }^{\circ} \mathbf{C}$
Fluorine	-220	-188
Chlorine	-101	-35
Bromine	-7	59

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$ What is the state of bromine at $100^{\circ} \mathrm{C}$?

Use Table 1.
Tick (\checkmark) one box.

Gas

Liquid

Solid
\square

| $\mathbf{0}$ | $\mathbf{1}$ | .2 |
| :--- | :--- | :--- | What temperature does chlorine gas condense at to form a liquid?

Use Table 1.
[1 mark]
Temperature $=$ \qquad ${ }^{\circ} \mathrm{C}$

0	1.	3

Going down Group 7 the melting points \qquad .

This is because the size of the molecules increases so the intermolecular forces \qquad .

A teacher investigated the reaction of iron with chlorine.
Figure 1 shows the apparatus used.
Figure 1

$\begin{array}{lll}0 & 1 & 4\end{array}$ Why did the teacher do the investigation in a fume cupboard?
Tick (\checkmark) one box.

Chlorine gas is coloured.

Chlorine gas is flammable.

Chlorine gas is toxic.

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{5}$ The word equation for the reaction is: |
| :--- | :--- | :--- | :--- |

$$
\text { iron }+ \text { chlorine } \rightarrow \text { iron chloride }
$$

Iron chloride is a solid.
The teacher weighed the glass tube and contents:

- before the reaction
- after the reaction.

What happened to the mass of the glass tube and contents during the reaction?
Give one reason for your answer.

The mass of the glass tube and contents \qquad .

Reason

Question 1 continues on the next page

The teacher repeated the investigation with bromine gas and with iodine gas.

Table 2 shows the results.
Table 2

Element	Observation
Chlorine	Iron burns vigorously with an orange glow
Bromine	Iron burns with an orange glow
lodine	Iron slowly turns darker

0	$\mathbf{1}$	6	Fluorine is above chlorine in Group 7.

Predict what you would observe when fluorine gas reacts with iron.
Use Table 2.
\qquad
\qquad

0	1	$\mathbf{7}$

$$
2 \mathrm{Fe}+\ldots \mathrm{Br}_{2} \rightarrow 2 \mathrm{FeBr}_{3}
$$

$\mathbf{0}$	$\mathbf{1}$.	8
Calculate the relative formula mass $\left(M_{\mathrm{r}}\right)$ of FeBr_{3}		

Relative atomic masses $\left(A_{r}\right): \quad \mathrm{Fe}=56 \quad \mathrm{Br}=80$
\qquad
\qquad

$\mathbf{0}$	$\mathbf{2} .1$	Atoms were first thought to be tiny spheres that could not be divided.

Which particle was discovered to change this model of the atom?
Tick (\checkmark) one box.

Electron

Proton

0	2	2

Figure 2

What is the name of this model of the atom?

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$	A scientist fired particles at gold atoms.

Some of these particles were scattered.
The results led to a different model of the atom.
Which type of particle was fired at the gold atoms?
Tick (\checkmark) one box.

Alpha

Electron

Neutron

Proton

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{4}$ Which scientist first suggested that electrons orbit the nucleus at specific distances?

Tick (\checkmark) one box.

Bohr

Chadwick

Mendeleev

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{5}$ The model of the atom used today has three subatomic particles:

- electrons
- neutrons
- protons.

Complete the sentences.

Atoms of the same element have the same atomic number because they have the same number of \qquad .

Atoms of the same element can have different mass numbers because they have different numbers of \qquad .

Atoms have no overall charge because they have the same number of \qquad and \qquad .

| $\mathbf{0}$ | $\mathbf{2} .6$ The radius of a nucleus is approximately $1 \times 10^{-14} \mathrm{~m}$ |
| :--- | :--- | :--- |

The radius of an atom is approximately $1 \times 10^{-10} \mathrm{~m}$
A teacher uses a ball of radius 1 cm to represent the nucleus.
What could represent the atom on the same scale?
Tick (\checkmark) one box.

A ball of radius 10 cm

A sports arena of radius 100 m

An island of radius 10 km

A planet of radius 1000 km

Hydrogen reacts with oxygen to produce water.
This reaction releases energy.

$\mathbf{0}$	$\mathbf{3} .1$	Complete the word equation for the reaction.

$$
\text { hydrogen + oxygen } \rightarrow
$$

0	$\mathbf{3}$.	2	Figure 3 shows a reaction profile for the reaction between hydrogen and oxygen.

Figure 3

What do the labels $\mathbf{W}, \mathbf{X}, \mathbf{Y}$ and \mathbf{Z} represent?
Choose answers from the box.

What is the reason for using this reaction in a fuel cell?

To produce a change of state

To produce a potential difference

To produce a temperature change

0	3.	4
A student investigated the voltage produced by a chemical cell.		

The student used different metals as the electrodes in the cell.
The metals used were:

- copper
- iron
- magnesium.

Which two metal electrodes would produce the greatest voltage when used in the chemical cell?

Give one reason for your answer.

Metals \qquad and

Reason \qquad

0	4	This question is about electrolysis.

A student investigated the hypothesis:
'The electrolysis of a salt solution produces a metal at the negative electrode and a gas at the positive electrode.'

Figure 4 shows the apparatus used.
Figure 4

| 0 | $\mathbf{4}$. | 1 |
| :--- | :--- | :--- | What observation would be made at each electrode if the hypothesis is correct?

Observation if metal produced at the negative electrode \qquad
\qquad
Observation if gas produced at the positive electrode \qquad
\qquad

Table 3 shows the student's results.
Table 3

Salt solution	Product at the negative electrode	Product at the positive electrode
Copper chloride	Copper	Chlorine
Potassium nitrate	Hydrogen	Oxygen
Silver nitrate	Silver	Oxygen

| 0 | $\mathbf{4}$. | 2 |
| :--- | :--- | :--- | Which salt solution in Table $\mathbf{3}$ does not match the student's hypothesis?

Give one reason why.

Salt solution \qquad
Reason
\qquad

$\mathbf{0}$	$\mathbf{4}$.	$\mathbf{3}$ Give two reasons why graphite is used for the electrodes.

1 \qquad
\qquad
2 \qquad
\qquad

A different student investigated what happens during electrolysis.
Figure 5 shows the apparatus.
Figure 5

The purple crystal contained:

- colourless positive ions
- purple coloured negative ions.

The purple crystal dissolved in the electrolyte solution.

0	4	4	What happens to the purple coloured ions?

Give one reason for your answer.
Tick (\checkmark) one box.

The ions do not move.

The ions move towards the negative electrode.

The ions move towards the positive electrode.

Reason \qquad

- pupl colour negative

Tick (V) one box.

Reas
\qquad

\qquad

0	5	4	The waste material from the bauxite is stored in lakes of mud.

The lakes of mud are held in place by dams.
Figure 6 shows one of these lakes.
Figure 6

Suggest two possible problems with storing the waste material in lakes of mud.
[2 marks]

1
\qquad
2 \qquad
\qquad

Aluminium is extracted by electrolysis.			
The aluminium oxide is mixed with cryolite and melted.			
The mixture is then electrolysed.			
0	5. 5	The formula of cryolite is $\mathrm{Na}_{3} \mathrm{AlF}_{6}$	
Give the total number of atoms in the formula.			
		Number of atoms =	

Number of atoms $=$
$\begin{array}{lll}0 & 5 & 6\end{array}$ What is the reason for adding cryolite to the aluminium oxide?
Tick (\checkmark) one box.

To increase the amount of aluminium extracted

To lower the melting point of the mixture

To reduce the amount of aluminium oxide needed \square

0	5	.7

Choose answers from the box.

aluminium		carbon		fluorine
	oxygen		sodium	

When the molten aluminium oxide and cryolite mixture is electrolysed the product at the positive electrode is \qquad .

This product reacts with the positive electrode because the positive electrode is made of \qquad .

| 0 | 5 | 8 |
| :--- | :--- | :--- | A sample of bauxite contains 25% aluminium.

Calculate the maximum mass of aluminium that can be extracted from 300000 kg of the sample of bauxite.

Give your answer in standard form.
\qquad
\qquad
\qquad
\qquad
\qquad

Maximum mass (in standard form) $=$ \qquad kg

made or

Maxinum mass (in standard \qquad

0	6	This question is about citric acid.

Figure 7 represents one molecule of citric acid.
Figure 7

$\mathbf{0}$	$\mathbf{6} .1$	$\mathbf{1}$

Use Figure 7.

| 0 | 6.2 |
| :--- | :--- | $\mathbf{2}$ What type of bonding is shown in Figure 7?

Tick (\checkmark) one box.

Covalent \square

Ionic

Metallic

| 0 | 6 | 3 |
| :--- | :--- | :--- | Figure 8 shows two representations of one molecule of citric acid, \mathbf{A} and \mathbf{B}.

Figure 8

A

B

Give two advantages of representation \mathbf{A} compared with representation B.

Advantages of \mathbf{A} :
1
\qquad
2 \qquad
\qquad

A student investigated the temperature change during the reaction between citric acid and sodium hydrogencarbonate solution.

Citric acid is a solid.

This is the method used.

1. Pour $25 \mathrm{~cm}^{3}$ of sodium hydrogencarbonate solution into a polystyrene cup.
2. Measure the temperature of the sodium hydrogencarbonate solution.
3. Add 0.25 g of citric acid to the cup.
4. Stir the solution.
5. Measure the temperature of the solution.
6. Repeat steps 3 to 5 until a total of 2.00 g of citric acid has been added.

Table 4 shows some of the student's results.

Table 4

Mass of citric acid added in \mathbf{g}	Temperature of solution in ${ }^{\circ} \mathbf{C}$
0.00	22.6
0.25	22.2
0.50	21.8
0.75	21.4
1.00	21.0
1.25	20.6

0	6	4 How do the results in Table 4 show that the reaction is endothermic?

\qquad
\qquad

$\mathbf{0}$	$\mathbf{6}$	$\mathbf{5}$	Three of the student's results are plotted on Figure 9.

A line of best fit for these points is drawn.
Complete Figure 9.
You should:

- plot the data from Table 4 on Figure 9
- draw a line of best fit through the points you have plotted
- extend your line of best fit to meet the line of best fit already drawn on Figure 9.

Figure 9

0	6	6	Determine the overall temperature change for the reaction.

Use Figure 9.
\qquad
\qquad
Overall temperature change $=$ \qquad ${ }^{\circ} \mathrm{C}$

| 0 | 6. | 7 |
| :--- | :--- | :--- | What is the dependent variable in this investigation?

Tick (\checkmark) one box.

Mass of citric acid

Temperature of solution

Volume of solution

Zinc nitrate is a salt.
A student produces zinc nitrate using an acid and a base.

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{1}$	Which acid should the student use to produce zinc nitrate?

Tick (\checkmark) one box.

Hydrochloric acid

Nitric acid

Sulfuric acid \square

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{2}$ Which is a base the student could use to produce zinc nitrate?

Tick (\checkmark) one box.

Zinc chloride

Zinc oxide

Zinc sulfate

$\begin{array}{llll}0 & \mathbf{7} & 3 & \text { Name the salt with the formula } \mathrm{MgBr}_{2}\end{array}$
\qquad

A student investigated how pH changes during a titration.
This is the method used.

1. Pour $25.0 \mathrm{~cm}^{3}$ of hydrochloric acid into a beaker.
2. Measure the pH of the hydrochloric acid with a pH probe.
3. Add $1.0 \mathrm{~cm}^{3}$ of sodium hydroxide solution from a burette.
4. Swirl the mixture.
5. Measure the pH of the mixture.
6. Repeat steps 3 to 5 until a total of $30.0 \mathrm{~cm}^{3}$ of sodium hydroxide solution has been added.

Figure 10 shows the student's results.
Figure 10

| $\mathbf{0}$ | $\mathbf{7} .4$ | Describe how the pH of the mixture changes as sodium hydroxide solution is added to |
| :--- | :--- | :--- | :--- | hydrochloric acid.

Use data from Figure 10 in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 7 | 5 |
| :--- | :--- | :--- | What volume of sodium hydroxide solution is needed to neutralise $25.0 \mathrm{~cm}^{3}$ of hydrochloric acid?

Use Figure 10.

Volume $=$ \qquad cm ${ }^{3}$

0	7	6	Figure 11 shows the colour of universal indicator at different pH values.

Figure 11

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

The student could have used universal indicator instead of a pH probe.
Determine the colour of universal indicator when $10.0 \mathrm{~cm}^{3}$ of sodium hydroxide solution has been added to $25.0 \mathrm{~cm}^{3}$ of hydrochloric acid.

Use Figure 10 and Figure 11.

Colour $=$ \qquad

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{7}$ |
| :--- | :--- | :--- | The student used a pipette to measure $25.0 \mathrm{~cm}^{3}$ of hydrochloric acid.

Figure 12 shows a pipette.
Figure 12

The pipette is labelled $25.0 \pm 0.06 \mathrm{~cm}^{3}$
Calculate the percentage uncertainty in the volume measured using this pipette.
Use the equation:

$$
\text { percentage uncertainty }=\frac{\text { uncertainty }}{\text { volume measured }} \times 100
$$

\qquad
\qquad
\qquad
Percentage uncertainty $=$ \qquad \%

| $\mathbf{0}$ | $\mathbf{7}$ | 8 | Give one advantage of using a pipette rather than using a measuring cylinder to |
| :--- | :--- | :--- | :--- | measure the volume of hydrochloric acid.

\qquad
\qquad

| 0 | 8 | 2 |
| :--- | :--- | :--- | Table 5 shows the structures of three compounds.

Table 5
Diagrams not to scale

Compound	Structure
Carbon dioxide	Key 0 C
Magnesium oxide	
Silicon dioxide	

Compare the structure and bonding of the three compounds:

- carbon dioxide
- magnesium oxide
- silicon dioxide.
\qquad

Turn over for the next question

Tick (\checkmark) two boxes.

They are soft metals.
\square
They form ions with different charges.

\square

| 0 | 9 | 2 |
| :--- | :--- | :--- | A student added copper metal to colourless silver nitrate solution.

The student observed:

- pale grey crystals forming
- the solution turning blue.

Explain how these observations show that silver is less reactive than copper.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The metals are magnesium, iron and copper.

Plan an investigation to identify the three metals by comparing their reactions with dilute hydrochloric acid.

Your plan should give valid results.

Your plan should
\qquad

Question 9 continues on the next page

0	$\mathbf{9}$	$\mathbf{4}$ Metal \mathbf{M} has two isotopes.

Table 6 shows the mass numbers and percentage abundances of the isotopes.
Table 6

Mass number	Percentage abundance (\%)
203	30
205	70

Calculate the relative atomic mass $\left(A_{r}\right)$ of metal \mathbf{M}.
Give your answer to 1 decimal place.
\qquad
\qquad
\qquad
\qquad

Relative atomic mass (1 decimal place) $=$

$\mathbf{1}$	$\mathbf{0}$	This question is about silver iodide.

Silver iodide is produced in the reaction between silver nitrate solution and sodium iodide solution.

The equation for the reaction is:

$$
\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{Nal}(\mathrm{aq}) \rightarrow \mathrm{Agl}(\mathrm{~s})+\mathrm{NaNO}_{3}(\mathrm{aq})
$$

1	$\mathbf{0}$.	$\mathbf{1}$

This is the method used.

1. Pour silver nitrate solution into a beaker labelled \mathbf{A}.
2. Pour sodium iodide solution into a beaker labelled B.
3. Measure the masses of both beakers and their contents.
4. Pour the solution from beaker \mathbf{B} into beaker \mathbf{A}.
5. Measure the masses of both beakers and their contents again.

Table 7 shows the student's results.
Table 7

	Mass before mixing in g	Mass after mixing in g
Beaker \mathbf{A} and contents	78.26	108.22
Beaker B and contents	78.50	48.54

Explain how the results demonstrate the law of conservation of mass.
You should use data from Table 7 in your answer.
\qquad
\qquad
\qquad
\qquad

| $\mathbf{1}$ | $\mathbf{0} .2$ | $\mathbf{2}$ Suggest how the student could separate the insoluble silver iodide from the mixture at |
| :--- | :--- | :--- | the end of the reaction.

\qquad
\qquad

The student purified the separated silver iodide.
This is the method used.

1. Rinse the silver iodide with distilled water.
2. Warm the silver iodide.

1 0. $\mathbf{1}$. Suggest one impurity that was removed by rinsing with water.
\qquad
\qquad
$\begin{array}{lll}1 & 0 & 4 \\ 4 & \text { Suggest why the student warmed the silver iodide. }\end{array}$
\qquad
\qquad

Question 10 continues on the next page

| 1 | 0 | $\mathbf{5}$ Calculate the percentage atom economy for the production of silver iodide in |
| :--- | :--- | :--- | :--- | this reaction.

The equation for the reaction is:

$$
\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{Nal}(\mathrm{aq}) \rightarrow \mathrm{Agl}(\mathrm{~s})+\mathrm{NaNO}_{3}(\mathrm{aq})
$$

Give your answer to 3 significant figures.
Relative formula masses $\left(M_{\mathrm{r}}\right): \mathrm{AgNO}_{3}=170 \quad \mathrm{NaI}=150 \quad \mathrm{AgI}=235 \quad \mathrm{NaNO}_{3}=85$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Percentage atom economy (3 significant figures) $=$ \qquad \%

1	0	6

\qquad
\qquad

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	\qquad
	\qquad

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

