

Please write clearly in block capitals.	
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

GCSE CHEMISTRY

 \vdash

Higher Tier Paper 2

Wednesday 12 June 2019 Morning Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Exami	ner's Use
Question M	lark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

^{*}JUN1984622H01*

Answer all questions in the spaces provided.

0 1 This question is about crude oil and hydrocarbons.

Figure 1 shows a fractionating column used to separate crude oil into fractions.

Figure 1

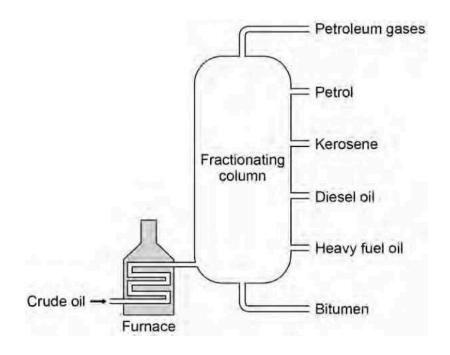


Table 1 gives information about some of the fractions.

Table 1

Fraction	Boiling point range in °C
Petroleum gases	Below 30
Petrol	40-110
Kerosene	180–260
Diesel oil	260–320
Heavy fuel oil	320–400
Bitumen	400–450

0 1.1	Suggest a suitable temperature for the furnace in Figure 1 .	
	[1 ma	ark]
		°C
0 1.2	Explain why diesel oil collects above heavy fuel oil but below kerosene in the fractionating column.	
	Use Table 1.	
	[2 mar	ks]
	Contract to a management with the management of the contract o	
0 1.3	Suggest two reasons why bitumen is not used as a fuel. [2 mar	ks]
	1	
	2	
	Question 1 continues on the next page	
	£	

0 1.4	Petrol contains mainly alkanes.
	Which of the following compounds is an alkane? [1 mark]
	Tick (🗆) one box.
	C2H4
	C4H8
	C6H14
	C8H16
	Large hydrocarbon molecules in the diesel oil fraction are cracked to produce smaller hydrocarbon molecules.
0 1.5	Describe the conditions needed to crack hydrocarbon molecules from the diesel oil
	fraction. [2 marks]

0 1.6	Explain why large hydrocarbon molecules in the diesel oil fraction are crac produce smaller hydrocarbon molecules.	ked to
	produce smaller nydrocarbon molecules.	[2 marks]
0 1 7	Complete the equation for the cracking of C15H32	[1 mark]
	$C15H_2 \rightarrow C12H_6 + $	
	Turn over for the next question	

11

0 2

This question is about lithium carbonate.

Lithium carbonate is used in medicines.

Figure 2 shows a tablet containing lithium carbonate.

Figure 2

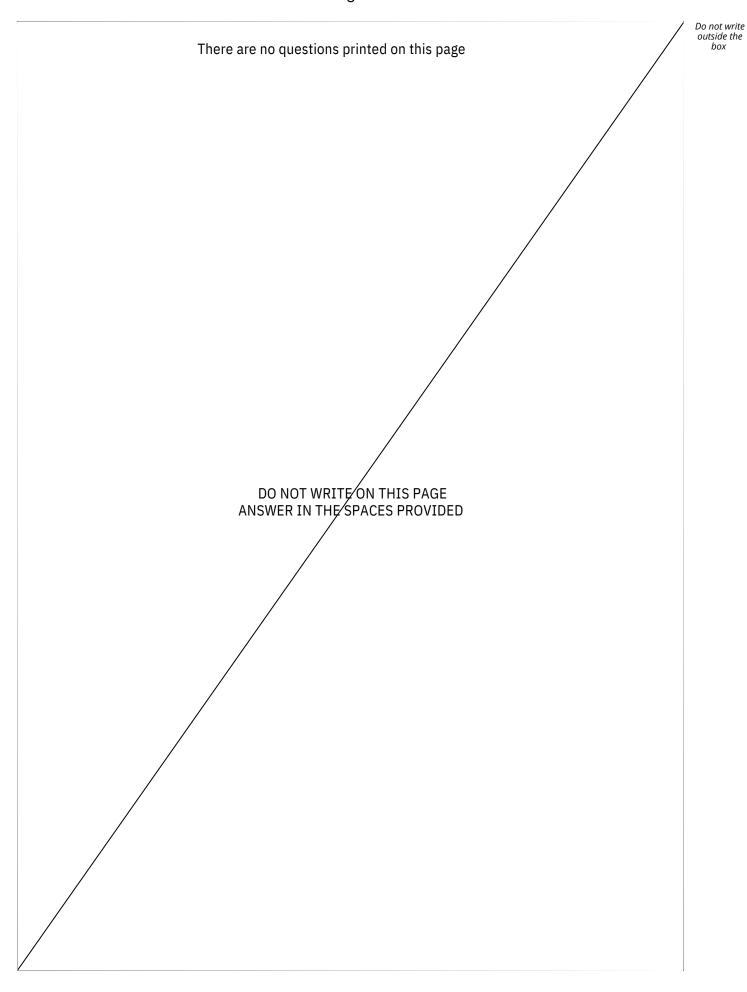
0 2.1

Lithium carbonate contains lithium ions and carbonate ions.

A student tested the tablet for lithium ions and for carbonate ions.

The student used:

- a metal wire
- dilute hydrochloric acid
- limewater.


Plan an investigation to show the presence of lithium ions and of carbonate ions in the tablet.

You should include the results of the tests for the ions.

[6 marks]

*

The tablet also contains other substances. The substances in tablets are present in fixed amounts. What name is given to mixtures like tablets? [1 mark] The tablet has a mass of 1.20 g and contains 700 mg of lithium carbonate. Calculate the percentage by mass of lithium carbonate in this tablet. [3 marks] Percentage by mass of lithium carbonate = 96				outside box
The substances in tablets are present in fixed amounts. What name is given to mixtures like tablets? [1 mark] The tablet has a mass of 1.20 g and contains 700 mg of lithium carbonate. Calculate the percentage by mass of lithium carbonate in this tablet. [3 marks] Percentage by mass of lithium carbonate =				
The substances in tablets are present in fixed amounts. What name is given to mixtures like tablets? [1 mark] The tablet has a mass of 1.20 g and contains 700 mg of lithium carbonate. Calculate the percentage by mass of lithium carbonate in this tablet. [3 marks] Percentage by mass of lithium carbonate =				
The substances in tablets are present in fixed amounts. What name is given to mixtures like tablets? [1 mark] The tablet has a mass of 1.20 g and contains 700 mg of lithium carbonate. Calculate the percentage by mass of lithium carbonate in this tablet. [3 marks] Percentage by mass of lithium carbonate =				
The substances in tablets are present in fixed amounts. What name is given to mixtures like tablets? [1 mark] The tablet has a mass of 1.20 g and contains 700 mg of lithium carbonate. Calculate the percentage by mass of lithium carbonate in this tablet. [3 marks] Percentage by mass of lithium carbonate =				
The substances in tablets are present in fixed amounts. What name is given to mixtures like tablets? [1 mark] The tablet has a mass of 1.20 g and contains 700 mg of lithium carbonate. Calculate the percentage by mass of lithium carbonate in this tablet. [3 marks] Percentage by mass of lithium carbonate = %				
The substances in tablets are present in fixed amounts. What name is given to mixtures like tablets? [1 mark] The tablet has a mass of 1.20 g and contains 700 mg of lithium carbonate. Calculate the percentage by mass of lithium carbonate in this tablet. [3 marks] Percentage by mass of lithium carbonate = %				
The substances in tablets are present in fixed amounts. What name is given to mixtures like tablets? [1 mark] The tablet has a mass of 1.20 g and contains 700 mg of lithium carbonate. Calculate the percentage by mass of lithium carbonate in this tablet. [3 marks] Percentage by mass of lithium carbonate =				
The substances in tablets are present in fixed amounts. What name is given to mixtures like tablets? [1 mark] The tablet has a mass of 1.20 g and contains 700 mg of lithium carbonate. Calculate the percentage by mass of lithium carbonate in this tablet. [3 marks] Percentage by mass of lithium carbonate =				
The substances in tablets are present in fixed amounts. What name is given to mixtures like tablets? [1 mark] The tablet has a mass of 1.20 g and contains 700 mg of lithium carbonate. Calculate the percentage by mass of lithium carbonate in this tablet. [3 marks] Percentage by mass of lithium carbonate = %				
The substances in tablets are present in fixed amounts. What name is given to mixtures like tablets? [1 mark] The tablet has a mass of 1.20 g and contains 700 mg of lithium carbonate. Calculate the percentage by mass of lithium carbonate in this tablet. [3 marks] Percentage by mass of lithium carbonate = %				
The substances in tablets are present in fixed amounts. What name is given to mixtures like tablets? [1 mark] The tablet has a mass of 1.20 g and contains 700 mg of lithium carbonate. Calculate the percentage by mass of lithium carbonate in this tablet. [3 marks] Percentage by mass of lithium carbonate = %				
What name is given to mixtures like tablets? [1 mark] The tablet has a mass of 1.20 g and contains 700 mg of lithium carbonate. Calculate the percentage by mass of lithium carbonate in this tablet. [3 marks] Percentage by mass of lithium carbonate = %	0 2.2	The tablet also contains other substances.		
[1 mark] The tablet has a mass of 1.20 g and contains 700 mg of lithium carbonate. Calculate the percentage by mass of lithium carbonate in this tablet. [3 marks] Percentage by mass of lithium carbonate = %		The substances in tablets are present in fixed amounts.		
The tablet has a mass of 1.20 g and contains 700 mg of lithium carbonate. Calculate the percentage by mass of lithium carbonate in this tablet. [3 marks] Percentage by mass of lithium carbonate = %				
Calculate the percentage by mass of lithium carbonate in this tablet. [3 marks] Percentage by mass of lithium carbonate = %		נן	. markj	
Calculate the percentage by mass of lithium carbonate in this tablet. [3 marks] Percentage by mass of lithium carbonate =				
Calculate the percentage by mass of lithium carbonate in this tablet. [3 marks] Percentage by mass of lithium carbonate =				
Percentage by mass of lithium carbonate =	0 2.3	The tablet has a mass of 1.20 g and contains 700 mg of lithium carbonate.		
Percentage by mass of lithium carbonate =			marksl	
		[O	marksj	
10		Percentage by mass of lithium carbonate =	%	
				10

* 08*

0 3	This question is about rate of reaction.
	A student investigated the rate of the reaction between magnesium and dilute hydrochloric acid. The equation for the reaction is:
	$Mg(s) + 2 HCl(aq) \rightarrow MgCl2(aq) + H2(g)$
0 3.1	Which state symbol in the equation for the reaction does not represent one of the three states of matter?
	[1 mark]
	The student determined the rate of production of hydrogen gas.
0 3.2	What two pieces of measuring apparatus could the student use to find the rate of production of hydrogen gas?
	[2 marks]
	1
	2
	Question 3 continues on the next page

Table 2 shows the results of the investigation.

Table 2

	Time in s	Rate of production of gas in cm3/s	
10		6.9	
20		3.9	
30		2.0	
40		0.9	
50		0.3	
60		0.0	

0 3.3

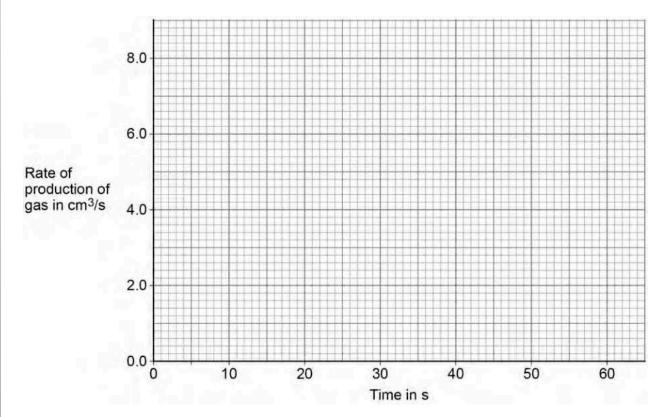

Plot the data from Table 2 on

Figure 3.

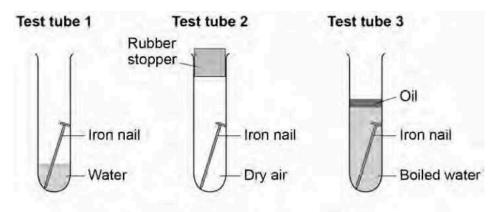
You should draw a line of best fit.

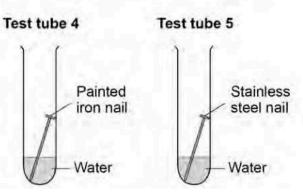
[3 marks]

Figure 3

Use data from Figure 3 and Table 2. [3 marks] 1	0 3.4	Give three conclusions that can be drawn about the rate of reaction be magnesium and dilute hydrochloric acid in this investigation.	etween	outside box
The student repeated the investigation using dilute hydrochloric acid at a higher temperature. All the other variables were kept the same. Which two statements are correct? Tick (I) two boxes. More bubbles were produced in the first 10 seconds. The activation energy for the reaction was higher. The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.				
The student repeated the investigation using dilute hydrochloric acid at a higher temperature. All the other variables were kept the same. Which two statements are correct? Tick (I) two boxes. More bubbles were produced in the first 10 seconds. The activation energy for the reaction was higher. The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.			[3 marks]	
The student repeated the investigation using dilute hydrochloric acid at a higher temperature. All the other variables were kept the same. Which two statements are correct? Tick (I) two boxes. More bubbles were produced in the first 10 seconds. The activation energy for the reaction was higher. The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.			[o marko]	
The student repeated the investigation using dilute hydrochloric acid at a higher temperature. All the other variables were kept the same. Which two statements are correct? Tick (I) two boxes. More bubbles were produced in the first 10 seconds. The activation energy for the reaction was higher. The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.		1		
The student repeated the investigation using dilute hydrochloric acid at a higher temperature. All the other variables were kept the same. Which two statements are correct? Tick (I) two boxes. More bubbles were produced in the first 10 seconds. The activation energy for the reaction was higher. The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.				
The student repeated the investigation using dilute hydrochloric acid at a higher temperature. All the other variables were kept the same. Which two statements are correct? Tick (I) two boxes. More bubbles were produced in the first 10 seconds. The activation energy for the reaction was higher. The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.		2		
The student repeated the investigation using dilute hydrochloric acid at a higher temperature. All the other variables were kept the same. Which two statements are correct? Tick (I) two boxes. More bubbles were produced in the first 10 seconds. The activation energy for the reaction was higher. The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.				
The student repeated the investigation using dilute hydrochloric acid at a higher temperature. All the other variables were kept the same. Which two statements are correct? Tick (I) two boxes. More bubbles were produced in the first 10 seconds. The activation energy for the reaction was higher. The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.		ব		
temperature. All the other variables were kept the same. Which two statements are correct? Tick (I) two boxes. More bubbles were produced in the first 10 seconds. The activation energy for the reaction was higher. The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.				
temperature. All the other variables were kept the same. Which two statements are correct? Tick (I) two boxes. More bubbles were produced in the first 10 seconds. The activation energy for the reaction was higher. The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.				
temperature. All the other variables were kept the same. Which two statements are correct? Tick (I) two boxes. More bubbles were produced in the first 10 seconds. The activation energy for the reaction was higher. The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.				
temperature. All the other variables were kept the same. Which two statements are correct? Tick (I) two boxes. More bubbles were produced in the first 10 seconds. The activation energy for the reaction was higher. The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.				
temperature. All the other variables were kept the same. Which two statements are correct? Tick (I) two boxes. More bubbles were produced in the first 10 seconds. The activation energy for the reaction was higher. The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.	034	The student repeated the investigation using dilute hydrochloric acid a	ıt a higher	
Which two statements are correct? Tick ([]) two boxes. More bubbles were produced in the first 10 seconds. The activation energy for the reaction was higher. The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.	0 3.4		a a mgner	
Which two statements are correct? Tick ([]) two boxes. More bubbles were produced in the first 10 seconds. The activation energy for the reaction was higher. The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.		All the other variables were kept the same.		
Tick ([]) two boxes. More bubbles were produced in the first 10 seconds. The activation energy for the reaction was higher. The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.				
Tick (I) two boxes. More bubbles were produced in the first 10 seconds. The activation energy for the reaction was higher. The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.		Which two statements are correct?	[2 marks]	
The activation energy for the reaction was higher. The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.		Tick (□) two boxes.	[Z IIIai KS]	
The activation energy for the reaction was higher. The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.				
The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.		More bubbles were produced in the first 10 seconds.		
The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.		L		
The magnesium was used up more quickly. The reaction finished at the same time. The total volume of gas collected was greater.		The activation energy for the reaction was higher.		
The reaction finished at the same time. The total volume of gas collected was greater.				
The reaction finished at the same time. The total volume of gas collected was greater.		The magnesium was used up more quickly.		
The total volume of gas collected was greater.				
		The reaction finished at the same time.		
		The total volume of gas collected was greater.		

0 4 This question is about the corrosion of metals.


The corrosion of iron is called rusting.


0 4 1 A student investigated the rusting of iron.

This is the method used.

- 1. Set up the test tubes as shown in Figure 4.
- 2. Leave the test tubes for 1 week.
- 3. Examine the nails for signs of rust.

Figure 4

Explain what would happen to the nails in each of the test tubes.

[5 marks]

0 4.2	Magnesium is fixed to some steel ships. Explain how this prevents the steel from rusting.	[2 marks]
0 4.3	Explain why aluminium window frames do not corrode after they are made.	[2 marks]

0 5	This question is about combustion of fuels.
⁰ 5.1	Some central heating boilers use wood as a fuel.
	Suggest two reasons why wood is more sustainable than natural gas as a fuel for central heating boilers.
	[2 marks]
	1
	2
	Natural gas is mainly methane.
	When methane burns it can produce both carbon monoxide and carbon dioxide.
0 5.2	Explain the process by which carbon monoxide can be produced when methane is
	burned. [2 marks]
0 5 . 3	Balance the equation for the combustion of methane to produce carbon monoxide. [1 mark]
	$\underline{CH4(g) + O2(g) \rightarrow CO(g) + 2} \qquad \underline{\qquad} \qquad \underline{HO(l)}$

0 5.4	Propane burns to form carbon dioxide and water.	
	The equation for the reaction is:	
	C3H8(g) + 5 O2(g) \rightarrow 3 CO2(g) + 4 H2O(l)	
	3.60 dm3 carbon dioxide is produced when a sample of propane is burned in 7.25 dm3 oxygen.	
	Calculate the volume of unreacted oxygen.	
	Give your answer in cm3	
]	4 marks]
	Volume of unreacted oxygen =	cm3
	Turn over for the next question	

0 6 Figure 5 shows a surfer on a surfboard.

Figure 5

Surfboards are made from polymers.

Surfboards have a poly(styrene) core and an outer skin.

0 6.1 Figure 6 shows the displayed structural formula of poly(styrene).

Figure 6

$$\begin{pmatrix}
C_6H_5 & H \\
C & C \\
H & H
\end{pmatrix} r$$

 $\label{thm:complete} \textit{Figure 7 shows an incomplete displayed structural formula of the monomer styrene.}$

Complete Figure 7.

[2 marks]

Figure 7

	The outer skin of surfboards contains a polyester.	
	Two monomers, A and B, are needed to make the polyester.	
	Figure 8 shows how these two monomers are represented.	
	Figure 8	
	но — он	
	Monomer A Monomer B	
0 6.2	Name the functional group in monomer B.	
		[1 mark]
0 6.3	Monomers A and B join together to produce a polyester and a small mo	lecule.
	Name the small molecule.	[1 mark]
0 6.4	Why does this type of polyester melt when it is heated?	[2 marks]

	The outer skin of surfboards is a composite material.			outs Ł
	The composite material contains glass fibres surrounded by a polyester.			
0 6.5	Draw one line from each material to the description of that material. [2 marks]			! marks]
	Material		Description of the materia	ıl
			Hydrocarbon	
	Glass fibres Matrix			
	Monomer			
	Polyester Polypeptide			
			Reinforcement	
	The outer skin makes the surfboar	d more expensive	.	
0 6.6	Suggest two reasons why an outer	skin is added to t	the poly(styrene) core.	
	1		[2	marks]
	2			

* 18*

Do not write outside the box Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

0 7	A large amount of aluminium sulfate was accidentally added to the drinking supply at a water treatment works.	gwater
0 7.1	Describe a test to show that the drinking water contained aluminium ions. Give the result of the test. Test	[3 marks]
	Result	_
0 7.2	Describe a test to show that the drinking water contained sulfate ions. Give the result of the test.	[2 marks]
	Test	[2 IIIdIKS] -
	Result	

0 7.3	Plan an investigation to find the total mass of dissolved solids in a the drinking water.	100 cm3 sample of
	Your investigation should produce valid results.	
		[4 marks]
	Turn over for the next question	

0 8

Titan is a moon of the planet Saturn.

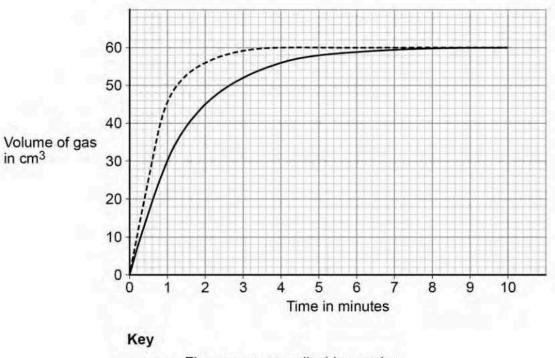
Table 3 shows the percentages of the gases in the atmosphere of Titan.

Table 3

Gas	Percentage of gas in atmosphere (%)
Nitrogen	98.4
Methane	1.4
Other gases	0.2

0 8.1	Some scientists think that living organisms could have evolved on Titan. Explain why these organisms could not have evolved in the same way that life is thought to have evolved on Earth. Use Table 3.		
	[3 marks]		

0 8.2	Saturn has other moons.		
	The other moons of Saturn have no atmosphere.		
	Titan is warmer than the other moons of Saturn because its atmosphere congreenhouse gas methane. Explain how this greenhouse gas keeps Titan warmer than the other moons		
	Explain now this greenhouse gas keeps than waither than the other moons		
		[3 marks]	
	The atmosphere of Titan contains small amounts of propose		
8.8	The atmosphere of Titan contains small amounts of propene.		
	Describe a test to show that propene is an unsaturated hydrocarbon.		
	Give the result of the test.	[2 marks]	
	Test		
	Result	<u> </u>	
	Result		
			[
			_


0 9	Some students investigated the rate of decomposition of hydrogen peroxide, H2O2		
	The equation for the reaction is:		
	2 H2O2(aq) → 2 H2O(l) + O2(g)		
	The catalyst for the reaction is manganese dioxide.		
0 9.1	Describe a test to identify the gas produced in the reaction.		
	Give the result of the test.		
	[2 marks]		
	Test		
	Result		

	Student A investigated the effect of the particle size of manganese dioxide on the ra of the reaction.		
	This is the method used.		
	1. Measure 25 cm3 of 0.3 mol/dm3 hydrogen peroxide solution into a c	conical flask.	
	2. Add a spatula of fine manganese dioxide powder to the conical flask.		
	3. Measure the volume of gas produced every minute for 10 minutes.		
	4. Repeat steps 1 to 3 with some coarse manganese dioxide lumps.		
	The method student A used did not give valid results.		
0 9 1 2	What two improvements could student A make to the method to give va	alid results? [2 marks]	
	Tick (□) two boxes.		
	Measure the increase in mass of the conical flask and contents.		
	Measure the volume of gas produced every 2 minutes.		
	Place the conical flask in a water bath at constant temperature.		
	Use 0.05 mol/dm3 hydrogen peroxide solution.		
	Use a mass of 1 g manganese dioxide each time.		
	Question 9 continues on the next page		

Student B used a method which gave valid results.

Figure 9 shows student B's results.

Figure 9

Key
---- Fine manganese dioxide powder
---- Coarse manganese dioxide lumps

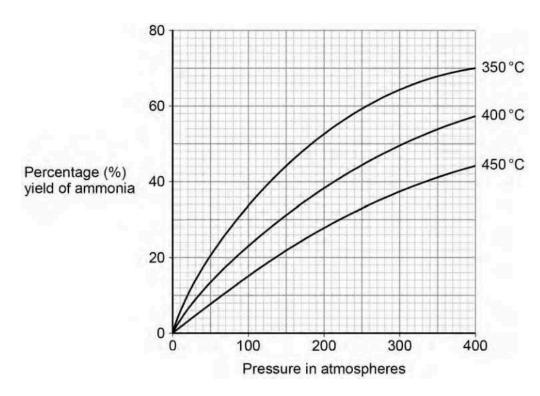
0 9 3 Determine the mean rate of reaction in cm3/s between 2 and 4 minutes for coarse manganese dioxide lumps.

Give your answer to 2 significant figures.

Use data from Figure 9.

[3 marks]

Mean rate of reaction = cm3/s


	Hydrogen peroxide molecules must collide with manganese dioxide particles for catalysis to take place.	Do not outside box
0 9.4	Student B repeated the experiment with coarse lumps of manganese dioxide.	
	Student B used the same volume of 0.2 mol/dm3 hydrogen peroxide instead of 0.3 mol/dm3 hydrogen peroxide. Sketch on Figure 9 the curve you would expect to see.	
	Assume that the reaction is complete after 9 minutes.	
	[2 marks]	
0 9.5	The rate of reaction is different when manganese dioxide is used as a fine powder rather than coarse lumps.	
	Explain why.	
	You should answer in terms of collision theory. [2 marks]	
		11
	Turn over for the next question	

1 0	This question is about reversible reactions and equilibrium.
	Hydrogen is used to produce ammonia in the Haber process.
	The hydrogen is made in two stages.
	Stage 1 is the reaction of methane and steam to produce carbon monoxide and hydrogen. The equation for the reaction is:
	CH4(g) + H2O(g) $CO(g) + 3 H2(g)$
1 0.1	Calculate the atom economy for the formation of hydrogen intage 1 .
	Relative atomic masses (Ar): H = 1 C = 12 O = 16 [2 marks]
	Atom economy = %

1 0.2	Explain why a low pressure is used in stage 1 .	Do not write outside the box
	Give your answer in terms of equilibrium. [2 marks]	
	[2 marks]	
1 0.3	Stage 2 uses the carbon monoxide produced in stage 1.	
	The carbon monoxide is reacted with more steam to produce carbon dioxide and more hydrogen.	
	The equation for the reaction in stage 2 is:	
	CO(g) + H2O(g)	£ la calca at a sa
	\rightleftharpoons CO2(g) + H2(g) What is the effect of increasing the pressure on the equilibrium yield o stage 2?	nyarogen
	[1 mark]	
	Question 10 continues on the next page	

Figure 10 shows the percentage yield of ammonia produced at different temperatures and pressures in the Haber process.

Figure 10

A temperature of 450 $^{\circ}$ C and a pressure of 200 atmospheres are used in the Haber process.

1 0.4

A student suggested that a temperature of 350 °C and a pressure of 285 atmospheres could be used instead of those used in the Haber process.

Determine how many times greater the percentage yield of ammonia obtained would be.

Use Figure 10.

[3 marks]

Percentage yield = _____ times greater

1 0.5	A pressure of 285 atmospheres is not used in the Haber process instead of 200 atmospheres.	D
	Give one reason why.	[1 mark]
10.6	How does Figure 10 show that the forward reaction in the Haber process is exothermic?	[1 mark]
10.7	World production of ammonia is now about 30 times greater than it was in 1 Suggest why the demand for ammonia has increased.	950. [2 marks]
	END OF QUESTIONS	

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Copyright information For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

Do not write outside the

box