

Please write clearly in	n block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

GCSE CHEMISTRY

Higher Tier Paper 1

Thursday 16 May 2019

Morning

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use				
Question M	ark			
1				
2				
3				
4				
5				
6				
7				
8				
9				
TOTAL				

Answer all questions in the spaces provided.

0 1 This question is about the periodic table.

In the 19th century, some scientists tried to classify the elements by arranging them in order of their atomic weights.

Figure 1 shows the periodic table Mendeleev produced in 1869.

His periodic table was more widely accepted than previous versions.

Figure 1

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Period 1	н	it'i					
Period 2	Li	Be	В	С	N	0	F
Period 3	Na	Mg	Al	Si	Р	s	Cl
Period 4	K Cu	Ca Zn	*	Ti .	V As	Cr Se	Mn Br
Period 5	Rb Ag	Sr Cd	Y In	Zr Sn	Nb Sb	Mo Te	*

The atomic weight of tellurium (Te) is 128 and that of iodine (I) is 127

Why did Mendeleev reverse the order of these two elements?

[1 mark]

0 1 2	Mendeleev left spaces marked with an asterisk *		
	He left these spaces because he thought missing elements belonged	there.	
	Why did Mendeleev's periodic table become more widely accepted th	an previ	ious
	versions?	ı	[3 marks]
0 1 3	Mendeleev arranged the elements in order of their atomic weight.		
	What is the modern name for atomic weight?		[1 mark]
	Tick (□) one box.		[1 mark]
	Atomic number		
	Mass number		
	Relative atomic mass		
	Relative formula mass		
	Complete the sentence.		
0 1 4	·		[1 mark]
	In the modern periodic table, the elements are arranged in order of		[1 mark]
			•

	Chlorine, iodine and astatine are in Group 7 of the modern periodic table.		Di O
0 1 5	Astatine (At) is below iodine in Group 7.		
	Predict:		
	• the formula of an astatine molecule		
	the state of astatine at room temperature.	[2 marks]	
	Formula of astatine molecule		
	State at room temperature		
0 1 6	Sodium is in Group 1 of the modern periodic table.		
	Describe what you would see when sodium reacts with chlorine.		
		[2 marks]	
			_
			-

0 2	This question is about acids and alkalis.	
0 2 1	Which ion do all acids produce in aqueous solution?	
	Tick (🛘) one box.	1 mark]
	H+	
	H-	
	0 ²⁻	
	OH-	
02.2	2 Calcium hydroxide solution reacts with an acid to form calcium chloride.	
Complete the v	word equation for the reaction. [2	marks]
aalaium budra		
calcium nyurox	oxide + acid → calcium chloride +	
Question 2 co	ontinues on the next page	

A student investigates the volume of sodium hydroxide solution that reacts with 25.0 cm3 of dilute sulfuric acid.

Figure 2 shows the apparatus the student uses.

Figure 2

Use Figure 2 to answer Questions02.3 and 02.4

0 2 B Name apparatus A.

[1 mark]

0 2 4 What is the reading on apparatus A?

[1 mark]

cm3

0 2 5	The higher the concentration of a sample of dilute sulfuric acid, the greater the volume of sodium hydroxide needed to neutralise the acid.
	The student tested two samples of dilute sulfuric acid, P and Q.
	Describe how the student could use titrations to find which sample, P or Q, is more concentrated.
	[6 marks

0 3

This question is about materials and their properties.

3.

Figure 3 shows a carbon nanotube.

Figure 3

The structure and bonding in a carbon nanotube are similar to graphene.

Carbon nanotubes are used in electronics because they conduct electricity.

Explain why carbon nanotubes conduct electricity.

[2 marks]

0 3 2 Figure 4 shows a badminton racket.

Figure 4

Table 1 shows some properties of materials.

The materials could be used to make badminton racket frames.

Table 1

³ Material	Density in g/cm Re	lative strength	Relative stiffness
Aluminium 2.7 0.3			69
Carbon nanotube 1.5	60		1000
Wood 0.71 0.1			10

Evaluate the use of the materials to make badminton racket frames. Use Table 1. [4 marks]

Zinc oxide can be produced as nanoparticles and as fine particles.

0 3 B A nanoparticle of zinc oxide is a cube of side 82 nm

Figure 5 represents a nanoparticle of zinc oxide.

Figure 5

Calculate the surface area of a nanoparticle of zinc oxide.

Give your answer in standard form.

[3 marks]

0 3 4 Some suncreams contain zinc oxide as nanoparticles or as fine particles.

Suggest one reason why it costs less to use nanoparticles rather than fine particles in suncreams.

Surface area =

[1 mark]

nm2

10

0 4	This question is about atomic structure.				
0 4 1	Atoms contain	subatomic particles.			
	Table 2 shows	properties of two su	batomic particles.		
	Complete Table	e 2.			
					[2 marks]
			Table 2		
		Name of particle	Relative mass Ro	elative charge	
		neutron			
				+1	
	An element X h	as two isotopes.			
	The isotopes h	ave different mass	numbers.		
0 4 2	Define mass nu	ımber.			
					[1 mark]
	NA /L * .1	1 1:55		0	
0 4 3	Why is the mas	s number different i	1 the two isotopes	5?	[1 mark]
	(Question 4 continu	es on the next n	200	
		Zaestion 4 continu	es on the next p	age	

0 4 4	The model of the atom changed as new evidence was discovered.	ou
	The plum pudding model suggested that the atom was a ball of positive charge with electrons embedded in it. Evidence from the alpha particle scattering experiment led to a change in the model of the atom from the plum pudding model. Explain how.	
	[4 marks]	

0 5	This question is about ammonia, NH3
0 5 1	Complete the dot and cross diagram for the ammonia molecule shown in Figure 6.
	Show only the electrons in the outer shell of each atom.
	[2 marks]
	Figure 6
	H N H
0 5 2	Give one limitation of using a dot and cross diagram to represent an ammonia molecule.
	[1 mark]
0 5 8	Explain why ammonia has a low boiling point.
	You should refer to structure and bonding in your answer.
	[3 marks]

Ammonia reacts with oxygen in the presence of a metal oxide catalyst to produce nitrogen and water.

0 5 4

Which metal oxide is most likely to be a catalyst for this reaction?

[1 mark]

Tick (\square) one box.

CaO

Cr203

MgO

Na2O

Figure 7 shows the displayed formula equation for the reaction.

Figure 7

$$4H-N-H + 3O=O \longrightarrow 2N=N + 6H-O-H$$

Table 3 shows some bond energies.

Table 3

Bond	N-H	0=0	$N \equiv N$	0 — н
Bond energy in kJ/mol	391	498	945	464

0 5 5	Calculate the overall energy change for the reaction.	
	Use Figure 7 and Table 3.	[3 marks]
	Overall energy change =	kJ
	Explain why the reaction between ammonia and oxygen is exothermic.	
0 5 6	Use values from your calculation in Question 05.5	
	oce values from your saleataner in question sole	[2 marks]
	Question 5 continues on the next page	

0 5 7

Figure 8 shows the reaction profile for the reaction between ammonia and oxygen.

Complete Figure 8 by labelling the:

- activation energy
- overall energy change.

[2 marks]

Figure 8

14

0 6

This question is about chemical cells.

A student investigated the voltage produced by different chemical cells.

Figure 9 shows the apparatus.

Figure 9

This is the method used.

- 1. Use cobalt as electrode X.
- 2. Record the cell voltage.
- 3. Repeat steps 1 and 2 using different metals as electrode χ .

0 6.1

Suggest two control variables used in this investigation.

[2 marks]

1

2

Table 4 shows the student's results.

Table 4

	Electrode X \	oltage of cell in volts
cobalt		+0.62
copper		0.00
magnesium		+2.71
nickel		+0.59
silver		-0.46
tin		+0.48

0 6 2	Write the six me	tals used for electrode X	in order of reactivity.		
	Use Table 4.				
	Justify your orde	er of reactivity.			
				[4	4 marks]
	Most reactive				
	Least reactive				
	Justification				

0 6 3	Which of the following pairs of metals would produce the greatest voltage when used as the electrodes in the cell?	out
	Use Table 4.	
	Tick ([]) one box.	
	Magnesium and cobalt	
	Magnesium and tin	
	Nickel and cobalt	
	Nickel and tin	
0 6 4	Hydrogen fuel cells can be used to power different forms of transport.	
	Some diesel trains are being converted to run on hydrogen fuel cells.	
	A newspaper article referred to the converted trains as the new 'steam trains'.	
	Suggest why.	
	[2 marks]	
		_

0 7	This question is about electrolysis.	
	Aluminium is produced by electrolysing a molten mixture of aluminium oxide	e and
0 7.1	cryolite. Explain why a mixture is used as the electrolyte instead of using only aluminium oxide.	
		[2 marks]
0 7 2	What happens at the negative electrode during the production of aluminium	? [1 mark]
	Tick (🛘) one box.	
	Aluminium atoms gain electrons.	
	Aluminium atoms lose electrons.	
	Aluminium ions gain electrons.	
]
	Aluminium ions lose electrons.	
	Oxygen is produced at the positive electrode.	
0 7 3	Complete the balanced half-equation for the process at the positive electroc	le.
		[2 marks]
	\rightarrow O ₂ +	

0 7 4	Explain why the positive electrode must be continually replaced.	[3 marks]
	-	
0 7 5	The overall equation for the electrolysis of aluminium oxide is:	
	2 Al2O3 → 4 Al + 3 O2	
	Calculate the mass of oxygen produced when 2000 kg of aluminium oxide is completely electrolysed.	
	Relative atomic masses (Ar): O = 16 Al = 27	
		[4 marks]
	Mass of oxygen =	kg
	,5	J

	Sodium metal and chlorine gas are produced by the electrolysis of molten sodium chloride.	outsi b
0 7 6	Explain why sodium chloride solution cannot be used as the electrolyte to produce sodium metal.	
	[2 marks]	
077	Calculate the volume of 150 kg of chlorine gas at room temperature and pressure.	
	The volume of one mole of any gas at room temperature and pressure is 24.0 dm3	
	Relative formula mass (Mr): Cl2 = 71	
	[2 marks]	
	Volume = dm3	
		16

0 8

Copper forms two oxides, Cu2O and CuO A

teacher investigated an oxide of copper.

Figure 10 shows the apparatus.

Figure 10

This is the method used.

- 1. Weigh empty tube A.
- 2. Add some of the oxide of copper to tube A.
- 3. Weigh tube A and the oxide of copper.
- 4. Weigh tube B and drying agent.
- 5. Pass hydrogen through the apparatus and light the flame at the end.
- 6. Heat tube A for 2 minutes.
- 7. Reweigh tube A and contents.
- 8. Repeat steps 5 to 7 until the mass no longer changes.
- 9. Reweigh tube B and contents.
- 10. Repeat steps 1 to 9 with different masses of the oxide of copper.

081	Suggest One reason why step 8 is needed.	[1 mark]
0 8 2	Explain why the excess hydrogen must be burned off.	[2 marks]
	Question 8 continues on the next page	

Figure 10 is repeated here.

Figure 10

Table 5 shows the teacher's results.

Table 5

Mass in g		
Tube A em	pty 105.72	
Tube A and	oxide of copper before heating 115.47	
Tube A and	contents after 2 minutes 114.62	
Tube A and	contents after 4 minutes 114.38	
Tube A and	contents after 6 minutes 114.38	
Tube B and	Contents at start 120.93	
Tube B and	contents at end 123.38	

When an oxide of copper is heated in a stream of hydrogen, the word equation for the reaction is:

copper oxide + hydrogen → copper + water

	Use Table 5. [2 marks]]
	Mass of copper = g	-
	Mass of water = g	
8.4	The teacher repeated the experiment with a different sample of the oxide of copper.	
	The teacher found that the oxide of copper produced 2.54 g of copper and 0.72 g of water. Two possible equations for the reaction are:	
	Equation 1: Cu2O + H2 → 2 Cu + H2O	
	Equation 2: CuO + H2 → Cu + H2O	
	Determine which is the correct equation for the reaction in the teacher's experiment.	
	Relative atomic masses (Ar): H = 1 O = 16 Cu = 63.5	
	[3 marks]]
	Turn over for the next question	

0 9	A student investigated the temperature change in the reaction between dilute sulfuric acid and potassium hydroxide solution.
	This is the method used.
	1. Measure 25.0 cm3 potassium hydroxide solution into a polystyrene cup.
	2. Record the temperature of the solution.
	3. Add 2.0 cm3 dilute sulfuric acid.
	4. Stir the solution.
	5. Record the temperature of the solution.
	6. Repeat steps 3 to 5 until a total of 20.0 cm3 dilute sulfuric acid has been added.
0 9 1	Suggest why the student used a polystyrene cup rather than a glass beaker for the reaction.
	[2 marks]
	Question 9 continues on the next page
	Queedien b continues en ano mente page

Table 6 shows some of the student's results.

Table 6

Volume of dilute sulfuric acid added in cm3	Temperature in °C
0.0	18.9
2.0	21.7
4.0	23.6
6.0	25.0
8.0	26.1
10.0	27.1

Figure 11 shows some of the data from the investigation.

Figure 11

0 9 2	Complete Figure 11:	
	 plot the data from Table 6 draw a line of best fit through these points extend the lines of best fit until they cross. 	
	extend the three of best in unite they cross.	[4 marks]
0 9 \$	Determine the volume of dilute sulfuric acid needed to react completely with 25.0 cm3 of the potassium hydroxide solution. Use Figure 11.	
		[1 mark]
	Volume of dilute sulfuric acid to react completely =	cm3
0 9 4	Determine the overall temperature change when the reaction is complete.	
	Use Figure 11.	[1 mark]
		[· ··································
	Overall temperature change =	
		°C
	Ougstion O sontinues on the next name	
	Question 9 continues on the next page	

0 9 5	The student repeated the investigation.
	The student used solutions that had different concentrations from the first investigation. The student found that 15.5 cm3 of 0.500 mol/dm3 dilute sulfuric acid completely reacted with 25.0 cm3 of potassium hydroxide solution. The equation for the reaction is:
	2 KOH + H2SO4 → K2SO4 + 2 H2O
	Calculate the concentration of the potassium hydroxide solution in mol/dm3 and in g/dm3
	Relative atomic masses (Ar): H = 1 O = 16 K = 39
	[6 marks]
	Concentration in mol/dm3 =mol/dm
	Concentration in g/dm3 =3 g/dm3
	END OF QUESTIONS

Copyright information

For confidentiality purposes acknowledgements of third-party copyright material are published in a separate booklet which is available for free download from www.aqa.org.uk after the live examination series.

Copyright © 2019 AQA and its licensors. All rights reserved.

* 196g8462/1H*

*

14