AQA

GCSE CHEMISTRY 8462/2H

Paper 2 Higher Tier

Mark scheme

June 2019

Version: 1.0 Final

196G8462/2H/MS

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and

expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2019 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student's answer read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student's answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in

small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level and then use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this. The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student's answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner's mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be

exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

Information to Examiners

1. General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- the typical answer or answers which are expected
- extra information to help the Examiner make his or her judgement

• the Assessment Objectives, level of demand and specification content that each question is intended to cover.

The extra information is aligned to the appropriate answer in the left-hand part of the mark scheme and should only be applied to that item in the mark scheme.

At the beginning of a part of a question a reminder may be given, for example: where consequential marking needs to be considered in a calculation; or the answer may be on the diagram or at a different place on the script.

In general the right-hand side of the mark scheme is there to provide those extra details which confuse the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and consistent.

2. Emboldening and underlining

2.1 In a list of acceptable answers where more than one mark is available 'any two from' is used, with the number of marks emboldened. Each of the following bullet points is a potential mark.

2.2 A bold and is used to indicate that both parts of the answer are required to award the mark.

2.3 Alternative answers acceptable for a mark are indicated by the use of or. Different terms in the mark scheme are shown by a / ; eg allow smooth / free movement.

2.4 Any wording that is underlined is essential for the marking point to be awarded.

3. Marking points

3.1 Marking of lists

This applies to questions requiring a set number of responses, but for which students have provided extra responses. The general principle to be followed in such a situation is that 'right + wrong = wrong'.

Each error / contradiction negates each correct response. So, if the number of error / contradictions equals or exceeds the number of marks available for the question, no marks can be awarded.

However, responses considered to be neutral (indicated as * in example 1) are not penalised.

Example 1: What is the pH of an acidic solution?

[1 mark]

Student	Response	Marks awarded
1 2	green, 5 red*, 5	0 1
3	red*, 8	0

Example 2: Name two planets in the solar system.

[2 marks]

Student	Response	Marks awarded
1	Neptune, Mars, Moon	1
2	Neptune, Sun, Mars,	0
	Moon	

3.2 Use of chemical symbols / formulae

If a student writes a chemical symbol / formula instead of a required chemical name, full credit can be given if the symbol / formula is correct and if, in the context of the question, such action is appropriate.

3.3 Marking procedure for calculations

Marks should be awarded for each stage of the calculation completed correctly, as students are instructed to show their working. Full marks can, however, be given for a correct numerical answer, without any working shown.

3.4 Interpretation of 'it'

Answers using the word 'it' should be given credit only if it is clear that the 'it' refers to the correct subject.

3.5 Errors carried forward

Any error in the answers to a structured question should be penalised once only.

Papers should be constructed in such a way that the number of times errors can be carried forward is kept to a minimum. Allowances for errors carried forward are most likely to be restricted to calculation questions and should be shown by the abbreviation ecf in the marking scheme.

3.6 Phonetic spelling

The phonetic spelling of correct scientific terminology should be credited unless there is a possible confusion with another technical term.

Brackets 3.7

(.....) are used to indicate information which is not essential for the mark to be awarded but is included to help the examiner identify the sense of the answer required.

3.8 Allow

In the mark scheme additional information, 'allow' is used to indicate creditworthy alternative answers.

3.9 Ignore

Ignore is used when the information given is irrelevant to the question or not enough to gain the marking point. Any further correct amplification could gain the marking point.

3.10 Do n<u>ot a</u>ccept

Do accept means that this is a wrong answer which, even if the correct answer is given as

not well, will still mean that the mark is not awarded.

4. Level of response marking instructions

Extended response questions are marked on level of response mark schemes.

- Level of response mark schemes are broken down into levels, each of which has a descriptor.
- The descriptor for the level shows the average performance for the level.
- There are two marks in each level.

Before you apply the mark scheme to a student's answer, read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1: Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student's answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer.

When assigning a level you should look at the overall quality of the answer. Do not look to penalise small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level.

Use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 2 with a small amount of level 3 material it would be placed in level 2 but be awarded a mark near the top of the level because of the level 3 content.

Step 2: Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this.

The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student's answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner's mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the indicative content to reach the highest level of the mark scheme.

You should ignore any irrelevant points made. However, full marks can be awarded only if there are no incorrect statements that contradict a correct response.

An answer which contains nothing of relevance to the question must be awarded no marks.

Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.1	a temperature between 400 (°C) and 500 (°C) inclusive	allow a temperature range entirely within 400 (°C) and 500 (°C) inclusive	1	AO3 4.7.1.2
01.2	(diesel oil has a) lower boiling point / range than heavy fuel oil (but diesel oil has a) higher boiling point / range than kerosene	ignore quoted values for boiling points ignore references to melting points ignore references to intermolecular forces or chain length allow temperature of vaporisation / condensation for boiling points throughout allow the boiling range (of diesel oil) is between those of heavy fuel oil and kerosene for 2 marks. ignore references to cost	1	A02 4.7.1.2
01.3	any two from: • (too) viscous • not (very) flammable • boiling point (too) high	allow references to difficulty of flow allow references to difficulty of ignition / burning do not accept bitumen takes more energy to burn allow not (very) volatile	2	AO2 4.7.1.3
01.4	<u>C6H14</u>		1	AO2 4.7.1.1

		1		
		ignore references to pressure		AO1 4.7.1.4
	high temperature	allow a quoted temperature	1	
		above 320 °C		
		ignore hot / heat		
	any one from:		1	
	• steam			
01.5	• catalyst	ignore name of catalyst		
		allow alumina		
		allow aluminium oxide allow porous pot		
		allow zeolite		
		allow converse argument for		
		larger molecules		
				AO1 4.7.1.4
	greater demand (for smaller		1	
	molecules)			
	any one from:			
01.6	(because smaller molecules are)	allow a named polymer	1	
	more usefulbetter fuels			
	 used to make alkenes 	ignore plastics		
	 used to make polymers 			
	C3H6		1	A02
01.7			-	4.1.1.1
				4.7.1.4
Total			11	
L				

Question	Answers	Mark	AO/ Spec. Ref	
02.1	Level 3: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	5–6	AO1 4.8.2.3 4.8.3.1 4.8.3.3	
	Level 2: The design/plan would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced.	3–4		
	Level 1: The design/plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	1–2		
	No relevant content	0		
	Indicative content			
	lithium: • crush tablets or dissolve tablet (in water or acid) • clean wire • place on wire • place in (roaring / blue / non-luminous) flame • observe flame colour • crimson flame			
	carbonate: • add hydrochloric acid • effervescence / fizzing • bubble gas through limewater • limewater becomes cloudy			
02.2	formulation(s)	1	AO1 4.8.1.2	

	1.20 g = 1200 mg or 700 mg = 0.700 g	an answer of 58.33333333 (%) correctly rounded to at least 2 significant figures scores 3 marks	1	AO2 4.8.1.2
02.3	$ \begin{array}{c} 700 \\ 1200 \\ \hline & 100 \text{ or} \\ \hline & 0.70 \\ 0 \\ 1.20 \\ \hline & 1.20 \\ \hline & 58.3 (\%) \end{array} $	allow correct use of incorrectly or not converted values from step 1 allow 58.3333333 (%) correctly rounded to at least 2 significant figures	1	
Total			10	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
03.1	(aq)	allow aqueous / aq	1	AO1 4.2.2.1 4.2.2.2
03.2	(gas) syringe	allow measuring cylinder (and water trough) allow balance	1	AO1 4.6.1.1
	stopclock / stopwatch	allow timer / clock / watch	1	
03.3	all points plotted correctly	allow a tolerance of ± ½ a small square allow at least 3 points plotted correctly for 1 mark.	2	AO2 4.6.1.1
03.5	line of best fit	allow correctly drawn line of best fit for incorrectly plotted points	1	
	(rate) decreases	allow slows down	1	AO3
	(rate decreases) more slowly as time increases	allow (rate decreases) at a non- linear rate	1	4.6.1.1
03.4	(rate) becomes zero at 60 s	allow the reaction stops at 60 s allow ecf from question 03.3	1	
	more bubbles were produced in			
03.5	the first 10 seconds the magnesium was used up		1	AO2 4.6.1.2
03.5	more quickly		1	
Total			11	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
[]	Tube 1: (nail) rusts because air / oxygen and water present		1	A01
	Tube 2: (nail) does not rust because no water	allow Tube 2: (nail) does not rust because only air / oxygen	1	A01
	Tube 3: (nail) does not rust because no air / oxygen	allow Tube 3: (nail) does not rust because only water	1	A01
	Tube 4: (nail) does not rust because paint is a barrier (to water / air / oxygen)	allow Tube 4: (nail) does not rust because paint is a protective layer / coating (against water / air / oxygen)	1	A01
		Or		A02
04.1		allow Tube 4: (nail) does not rust because paint protects it from water / air / oxygen	1	4.10.3.1 4.10.3.2
	Tube 5: (nail) does not rust because stainless steel resistant to corrosion	allow Tube 5: (nail) does not rust because stainless steel does not corrode allow Tube 5: (nail) does not rust because stainless steel contains nickel / chromium		
		If no other mark awarded allow 1 mark for correct rusting pattern in all 5 tubes		

04.2	magnesium is more reactive (than iron) (so magnesium) provides sacrificial protection	allow converse allow magnesium is more reactive (than steel) allow (so magnesium) corrodes / reacts instead of iron / steel allow (so magnesium) corrodes / reacts before iron / steel ignore references to protective layers ignore references to magnesium rusting	1	AO2 4.10.3.1
04.3	(aluminium has a coating of) aluminium oxide (so the aluminium oxide) protects the metal (from further corrosion)	allow (so aluminium oxide) prevents water / air / oxygen from reaching the metal	1 1	AO1 4.10.3.1
Total			9	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.1	wood is renewable or (natural) gas is finite (burning) wood produces the same amount of carbon dioxide as the trees absorbed or (burning natural) gas increases the amount of carbon dioxide (in the atmosphere)	allow wood is carbon-neutral allow wood does not add to global warming allow (burning natural) gas adds to global warming allow (burning natural) gas adds greenhouse gases (to the atmosphere) ignore references to energy / cost	1	AO3 4.9.2.2 4.10.1.1
05.2	not enough oxygen (so) incomplete combustion $2CH4(g)+3O2(g)\rightarrow 2CO(g)+4H2O$	allow not enough air do not accept no oxygen / air	1 1	AO1 4.9.3.1
05.3	(g)	allow correct multiples / fractions	-	AO2 4.9.3.1

05.4	ratio of O2 : CO2 = 5 : 3 (oxygen needed = 3.60×5) ³ = 6.0 (dm3) (oxygen unreacted = $7.25 - 6.0$) = 1.25 (dm3) (oxygen unreacted = 1.25×1000) = 1250 (cm3)	an answer of 1250 (cm3 oxygen unreacted) scores 4 marks allow correct calculation using an incorrectly determined mole ratio allow correct subtraction of an incorrectly calculated volume of oxygen allow correct conversion to cm3 anywhere in response alternative approach for MP1 and MP2 moles C02 = 0.15 and moles O2 = 0.25 (1) (0.25 x 24 =) 6.0 (dm3 oxygen needed) (1)	1 1 1	AO2 4.3.5 4.7.1.3
Total			9	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
06.1	C=C bond in correct position 3× C-H and 1× C-C bond in correct positions	do not accept any additional bonds or atoms ignore brackets and n before and after displayed structural formula an answer of C ₆ H ₅ H IC=C I I H H	1	AO2 4.7.3.1
06.2	carboxylic acid (group)	allow carboxyl (group)	1	AO1 4.7.2.4
06.3	water	allow H2O	1	AO1 4.7.3.2
06.4	(polyester is) thermosoftening (polyester has) no cross-links	allow (polyester is) thermoplastic ignore thermoforming allow intermolecular forces are weak do not accept references to breaking covalent bonds or breaking chains	1	AO1 AO3 4.10.3.3

MARK SCHEME – GCSE CHEMISTRY – 8462/2H – JUNE 2019

	glass fibres matrix polyester polypeptide reinforcement	allow for 1 mark:	1	AO3 4.10.3.3
06.5		hydrocarbon glass fibres matrix monomer polyester polypeptide reinforcement		
06.6	any two from: (to make the board) • harder • stronger • tougher • more rigid • waterproof	must be implied comparative statements	2	AO3 4.10.3.3
Total			10	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
	add sodium hydroxide (solution to water sample)		1	AO1 4.8.3.2
07.1	white precipitate (forms)		1	
	dependent on correct test in (precipitate which is) soluble in MF excess (NaOH)	2	1	
	add barium chloride (solution) allo and (dilute) hydrochloric acid (to a water sample)		1	AO1 4.8.3.5
07.2	white precipitate (forms) depende chloride / nitrate (solution) in MP1	nt on addition of barium	1	
07.3	07.3 Level 2: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.		3–4	
	Level 1: The design/plan would no relevant steps are identified, but li	t lead to a valid outcome. Some	1–2	
	No relevant content		0	
	Indicative content • weigh (evaporating) basin / dish • add measured volume of water • weigh (evaporating) basin / dish a • heat to evaporate water • reweigh • repeat heating until constant mas • subtract mass of (evaporating) ba • repeat and calculate a mean, dis calculate the mass in 100 cm3 wat	ss obtained asin / dish from mass scarding anomalous results •		AO1 4.10.1.2
Total			9	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
	(Titan has) little / no oxygen	ignore references to respiration	1	AO3 4.9.1.3
	(so) photosynthesis has not occurred (on Titan)	allow (so) no plants / algae to produce oxygen (on Titan)	1	
08.1	(therefore) little / no carbon dioxide present (on Titan)		1	
	or (therefore) oxygen-using animals cannot have evolved (on Titan)			
	(methane) allows short(er) wavelength radiation to pass through (from the sun)	allow (methane) allows uv / ultraviolet radiation to pass through (from the sun)	1	AO1 4.9.2.1
	(which is) re-emitted from the surface as long(er) wavelength radiation	allow (which is) re-emitted from the surface as ir / infra-red radiation	1	
08.2	(which is) absorbed (by methane in the atmosphere)	allow (which is) trapped (by methane in the atmosphere) if no other mark is awarded, allow 1 mark for methane absorbs long(er) wavelength radiation or methane absorbs ir / infra-red radiation	1	
08.3	(add) bromine (water)	do not accept bromide	1	AO1 4.7.1.4 4.7.2.1
	(changes from) orange to colourless	dependent on correct test in MP1 allow (changes from) brown to colourless ignore clear	1	4.7.2.1 4.7.2.2
Total			8	

wing splint do not accept burnin nich) relights dependent on corr 1 ore with a pop ice the conical flask in a water		1 1	AO1 4.8.2.2
ore with a pop ce the conical flask in a water	ect test in	1	
th at constant temperature.		1	AO3 4.6.1.2
e a mass of 1 g manganese xide each time.		1	
0.09167 incorrectly determined	value(s) for difference in volume and / or	1	A02 4.6.1.1
(c ea).0 ne).0 sw	m3) and 120 (seconds) n rate of reaction = 11) allow 9167 incorrectly determined 92 (cm3/s) allow a correctly of er given to 2 significant	m3) and 120 (seconds) n rate of reaction = 11) allow a correct calculation using 9167 incorrectly determined value(s) for difference in volume and / or 92 (cm3/s) allow a correctly calculated er given to 2 significant figures from an incorrect attempt	m3) and 120 (seconds) n rate of reaction = 11) allow a correct calculation using 9167 incorrectly determined value(s) for difference in volume and / or 92 (cm3/s) allow a correctly calculated er given to 2 significant figures from an incorrect attempt 1

09.4	line starts at origin and less steep than solid line		1	AO2
	line levelling off at 40 (cm3)	allow a tolerance of ± ½ a small square	1	AO3 4.6.1.2
09.5	(because) surface area (of fine manganese dioxide powder) greater (so) more collisions (with hydrogen peroxide molecules / particles) per unit time	allow converse for coarse lumps do not accept references to changes in kinetic energy or speed (of molecules / particles) ignore references to activation energy.	1	A02 4.6.1.2 4.6.1.3
Total			11	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
10.1	$\frac{6}{34} \times 100$	an answer of 17.6470588 (%) correctly rounded to at least 2 significant figures scores 2 marks	1	AO2 4.3.3.2
	= 17.6 (%)	allow 17.6470588 (%) correctly rounded to at least 2 significant figures	1	
		l allow converse arguments in	[<u> </u>
		terms of higher pressure ignore references to rate		AO2 4.6.2.4 4.6.2.7
	higher yield (of hydrogen or	allow more hydrogen or more	1	
	carbon monoxide or product) (because) fewer moles /	carbon monoxide or more product allow equilibrium moves to the right allow equilibrium moves in the forward direction		
10.2	molecules / particles on left hand side	allow (because) the reverse	1	
	or (because) more moles / molecules / particles on right hand side	reaction produces fewer moles / molecules / particles or		
		allow (because) the forward reaction produces more moles / molecules / particles		
		do not accept fewer / more atoms		
10.3	no effect (on yield of hydrogen)	allow position of equilibrium unaffected by pressure ignore references to rate of reaction	1	AO2 4.6.2.7

	an answer of 2.25 scores 3 marks 350 (°C) and 285 (atmospheres) allow a value between 62 (%) = 63 (%) and 64 (%) inclusive and 450 (°C) and 200 (atmospheres) = 28 (%)	1	AO2 4.10.4.1
10.4	⁶³ ²⁸ incorrectly determined value(s) for percentage yield	1	
	= 2.25 (times greater) allow a correct calculation using incorrectly determined value(s) for percentage yield correctly evaluated and rounded to at least 2 significant figures	1	
	allow converse arguments in terms of low(er) pressure any one from: • the energy costs would be ignore energy / cost unqualified high(er)	1	AO1 4.10.4.1
10.5	 the equipment would need to allow the equipment would be be strong(er) (more) expensive (to build / maintain) high(er) pressures are (more) allow (more) dangerous dangerous because (greater) risk of explosion 		
10.6	higher temperatures produce a allow converse lower (percentage) yield (of allow correct reference to shift in ammonia) equilibrium ignore references to pressure	1	AO2 4.6.2.6 4.10.4.1
10.7	 world population has increased allow more food needed any one from: demand for fertiliser has increased increased demand for other specified ammonia-based products e.g. nitric acid, drugs, dyes, explosives 	1	AO3 AO1 4.10.4.1 4.10.4.2
Total		12	