

Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

GCSE CHEMISTRY

Higher Tier Paper 1

Thursday 17 May 2018

Morning

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

*

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.

• You are reminded of the need for good English and clear presentation in your answers.

For Exam	iner's Use
Question M	lark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

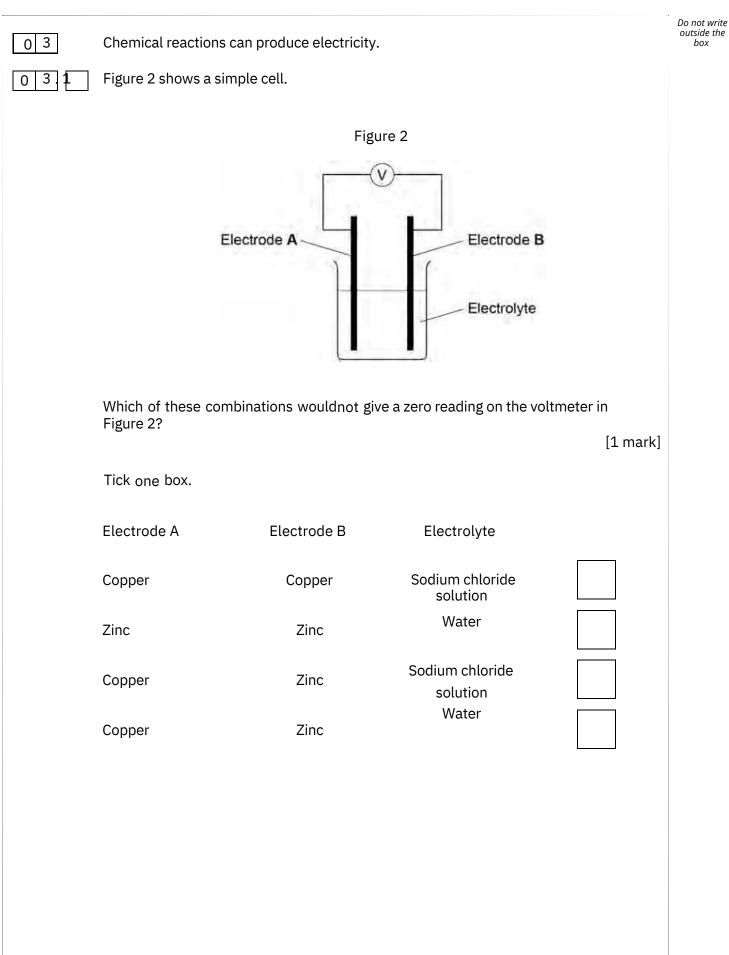
		Do not write
01	Soluble salts are formed by reacting metal oxides with acids.	outside the box
011	Give one other type of substance that can react with an acid to form a soluble salt. [1 mark]	
0 1 2	Calcium nitrate contains the ions Ca $^{2+}$ and NO $_3^-$	
	Give the formula of calcium nitrate. [1 mark]	
0 1 3	Describe a method to make pure, dry crystals of magnesium sulfate from a metal oxide and a dilute acid.	
	[6 marks]	

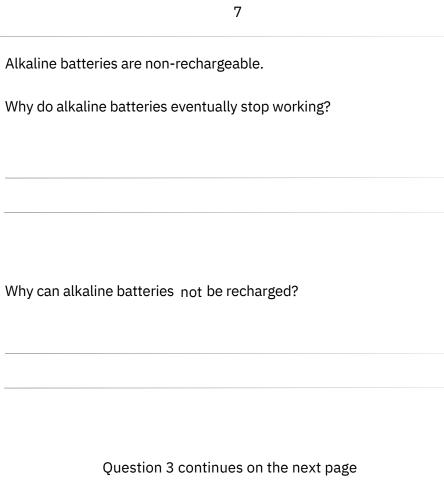
....

8

Turn over for the next question

Turn over ►


02	This question is about metals and metal compounds.	Do not writi outside the box
021	Iron pyrites is an ionic compound.	
	Figure 1 shows a structure for iron pyrites.	
	Figure 1	
	Key Fe S	
	Determine the formula of iron pyrites.	
	Use Figure 1. [1 r	mark]
022	An atom of iron is represented as 5626Fe Give the number of protons, neutrons and electrons in this atom of iron. [3 m Number of protons Number of neutrons Number of electrons	arks]
023	1	arks]
	2	


04

4

 Nickel is extracted from nickel oxide by reduction with carbon. Explain why carbon can be used to extract nickel from nickel oxide.	[2 marks]	Do not write outside the box
An equation for the reaction is: $NiO + C \square Ni + CO$ Calculate the percentage atom economy for the reaction to produce nickel. Relative atomic masses (Ar): C = 12 Ni = 59 Relative formula mass (Mr): NiO = 75 Give your answer to 3 significant figures.	[3 marks]	
Percentage atom economy =	% %	

05

Question 3 continues on the next page

0 3.2

0 3.3

Do not write outside the box

[1 mark]

[1 mark]

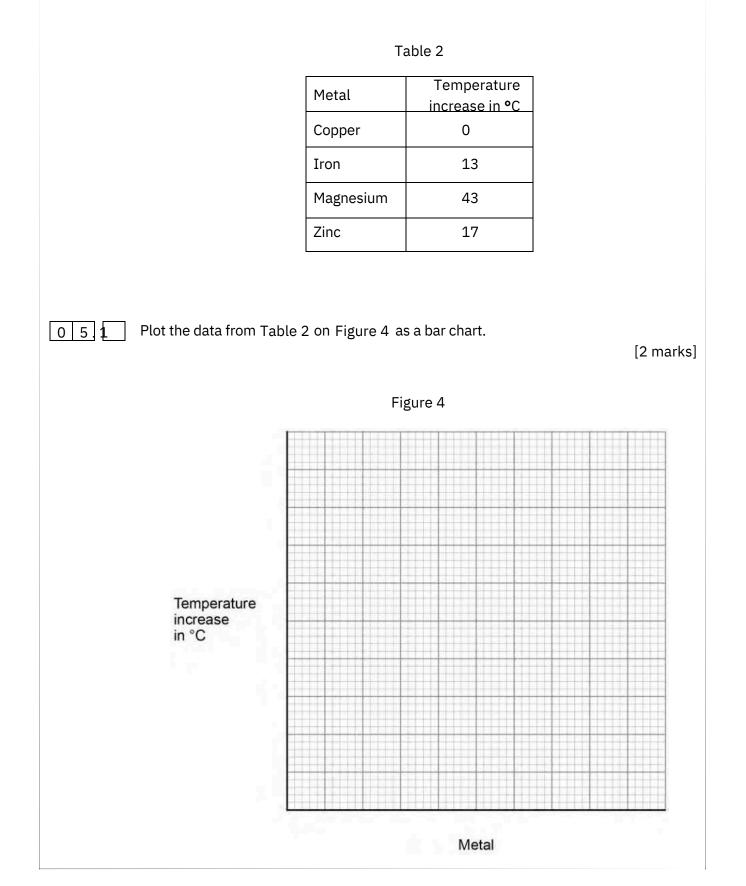
	Hydrogen fuel cells and rechargea electric cars.	ble lithium-ion batterie	s can be used to power	
034	Complete the balanced equation for the overall reaction in a hydrogen fuel cell. [2 marks			
	H2 +	D	H2O	
035	Table 1 shows data about differen	t ways to power electric	c cars.	
		Table 1		
		Hydrogen fuel cell	Rechargeable lithium-ion battery	
	Time taken to refuel or recharge in minutes 5 30			
	Distance travelled before refuelling or recharging in miles Up	to 415 Up to 240		
	Distance travelled per unit of energy in km 22 66 Cost of refuelling or recharging			
	in £ 50 3 Minimum cost of car in £ 60 000 1	8 000		
	Evaluate the use of hydrogen fuel of batteries to power electric cars. Use Table 1 and your own knowled		hargeable lithium-ion	
			[6 marks]	
			[o marks]	

* 0 8 *

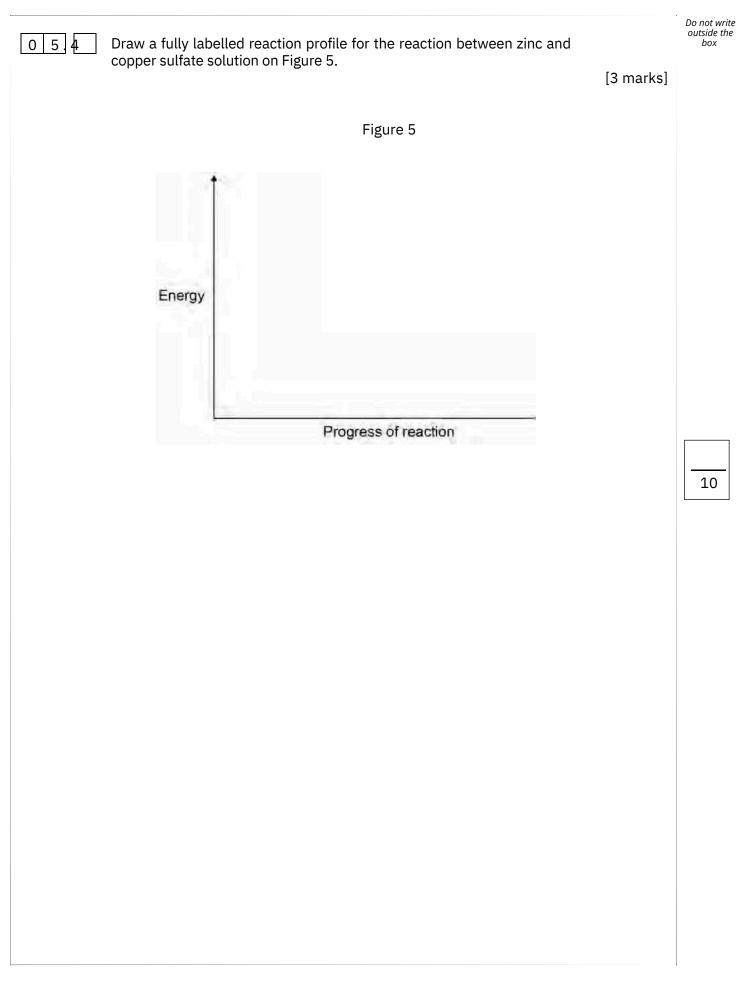
Turn over for the next question

11

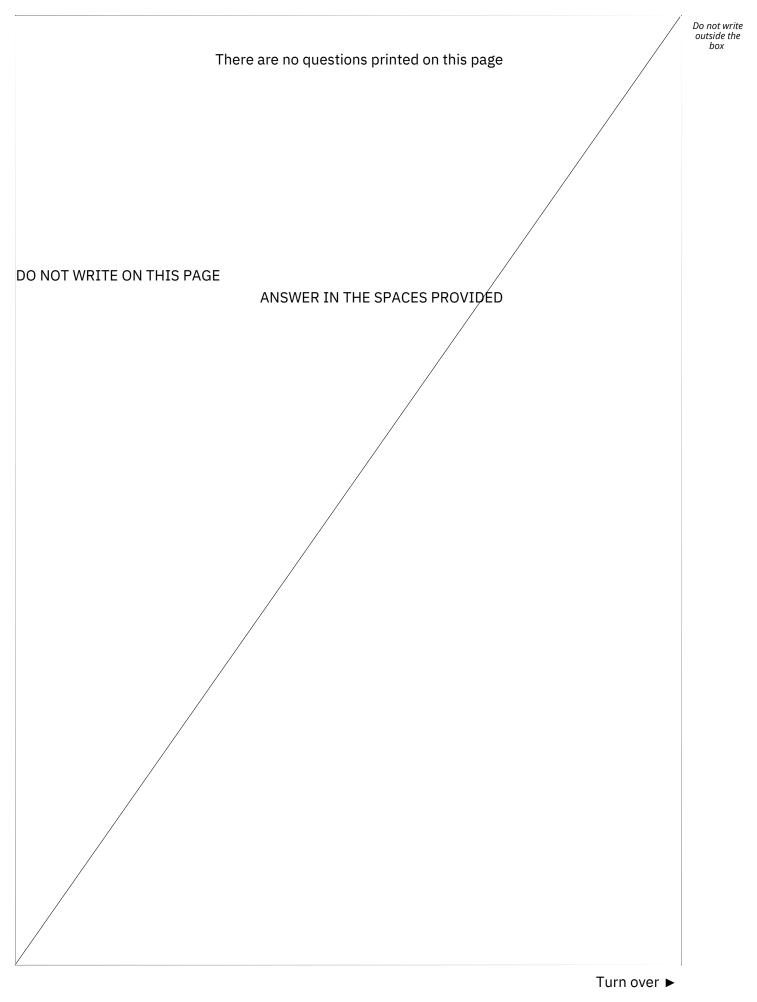
0 4	Figure 3 represents different models of the atom.	Do not write outside the box
	Figure 3	
	A B C D E	
041	Which diagram shows the plum pudding model of the atom? Tick one box. A B C D E	
042	Which diagram shows the model of the atom developed from the alpha particle scattering experiment? [1 mark] Tick one box. Image: Constraint of the atom developed from the alpha particle scattering experiment?	
043	Which diagram shows the model of the atom resulting from Bohr's work? Tick one box. A B C D E Image: Delta box Image: Delta box <td></td>	


044	Define the mass number of an atom. [1 mark]	Do not write outside the box
045	Element X has two isotopes. Their mass numbers are 69 and 71 The percentage abundance of each isotope is: • 60% of 69X • 40% of 71X Estimate the relative atomic mass of element X.	
	Tick one box. [1 mark]	
	< 69.5	
	Between 69.5 and 70.0	
	Between 70.0 and 70.5	
	> 70.5	
046	Chadwick's experimental work on the atom led to a better understanding of isotopes. Explain how his work led to this understanding.	
	[3 marks]	
		8
	Turn over ►	

Do not write outside the box


0 5

A student investigated the temperature change in displacement reactions between metals and copper sulfate solution.


Table 2 shows the student's results.

0 5 2	The student concluded that the reactions between the metals and copper sulfate solution are endothermic.	Do not write outside the box
	Give one reason why this conclusion is not correct.	
	[1 mark]	
0 5.3	The temperature change depends on the reactivity of the metal.	
	The student's results are used to place copper, iron, magnesium and zinc in order of	
	their reactivity.	
	Describe a method to find the position of an unknown metal in this reactivity series.	
	Your method should give valid results.	
	[4 marks]	
	Question 5 continues on the next page	
	Turn over ►	

14

06	A student investigated the electrolysis of different substances. Figure 6 shows the apparatus. Figure 6 $\int \frac{dc \text{ power}}{supply} Graphite electrodes$ Solid zinc chloride	Do not write outside the box
061	Explain why electrolysis would not take place in the apparatus shown in Figure 6. [2 marks]	
062	Explain why graphite conducts electricity. Answer in terms of the structure and bonding in graphite. [3 marks]	

16

The student investigated how the volume of gases produced changes with time in the electrolysis of sodium chloride solution.

Figure 7 shows the apparatus.

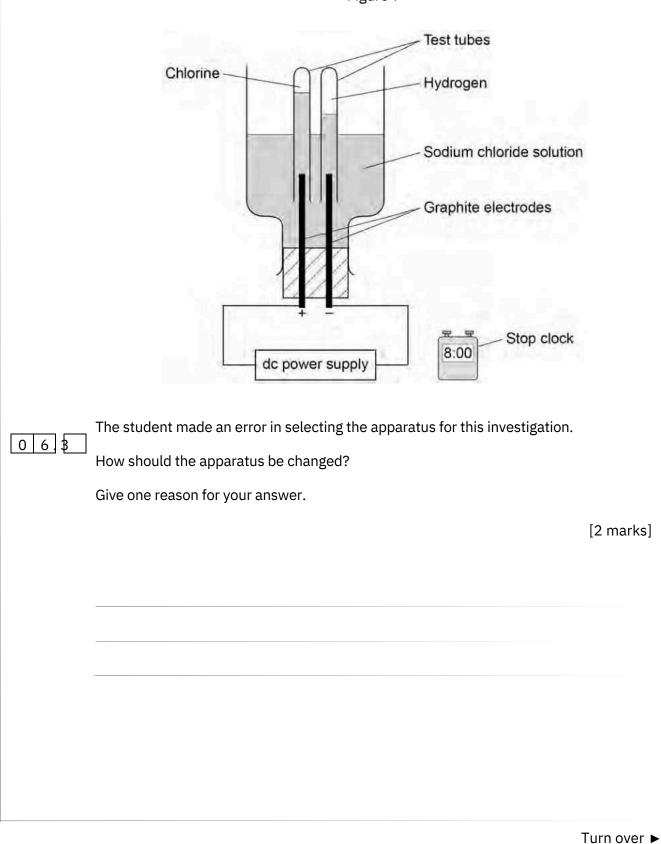
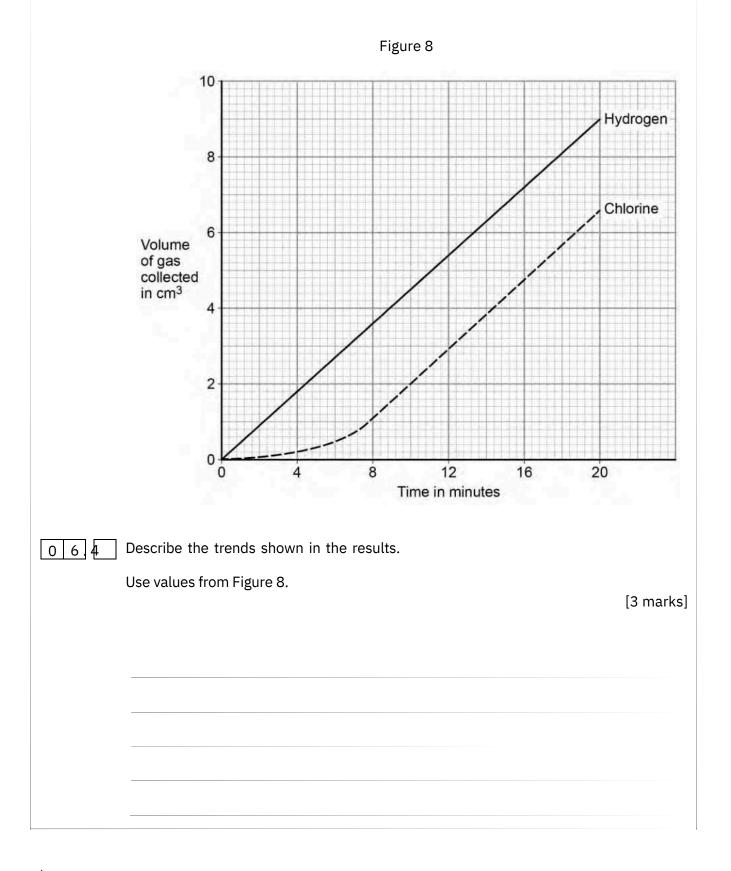



Figure 7

Do not write outside the box Another student used the correct apparatus.

This student measured the volumes of gases collected every minute for 20 minutes.

Figure 8 shows the student's results.

06.5	The number of moles of each gas produced at the electrodes is the same.	Do not write outside the box
	No gas escapes from the apparatus.	
	Suggest one reason for the difference in volume of each gas collected.	
	[1 mark]	
066	Calculate the amount in moles of chlorine collected after 20 minutes.	
	Use Figure 8.	
	The volume of one mole of any gas at room temperature and pressure is 24.0 dm3	
	Give your answer in standard form.	
	[3 marks]	
	Moles of chlorine = mol	
		14
	Turn over for the next question	14
	Turn over ►	

19

0 7	This question is about Group 7 elements. Chlorine is more reactive than iodine.	Do not write outside the box
071	Name the products formed when chlorine solution reacts with potassium iodide solution. [1 mark]	
0 7 2	Explain why chlorine is more reactive than iodine. [3 marks]	
0 7 3	Chlorine reacts with hydrogen to form hydrogen chloride. Explain why hydrogen chloride is a gas at room temperature.	
	Answer in terms of structure and bonding. [3 marks]	

21

0 7.4

Bromine reacts with methane in sunlight.

Figure 9 shows the displayed formulae for the reaction of bromine with methane.

Figure 9

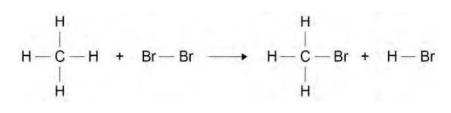


Table 3 shows the bond energies and the overall energy change in the reaction.

Table 3

	CH Br	Br <u>CB</u> r	HBr	Overall energy change
Energy in kJ/mol 412 193		Х	366	- 51

Calculate the bond energy X for the C___Br bond.

Use Figure 9 and Table 3.

[4 marks]

Bond energy X = _____ kJ/mol

11

Turn over ►

08	Titanium is a transition metal. Titanium is extracted from titanium dioxide in a two stage industrial process. Stage 1 TiO2 + 2 C + 2 Cl2 I TiCl4 + 2 CO Stage 2 TiCl4 + 4 Na I Ti + 4 NaCl Suggest one hazard associated with Stage 1. [1 mark]	Do not write outside the box
082	Water must be kept away from the reaction in Stage 2. Give one reason why it would be hazardous if water came into contact with sodium. [1 mark]	
083	Suggest why the reaction inStage 2 is carried out in an atmosphere of argon and not in air. [2 marks]	

22

084	Titanium chloride is a liquid at room temperature.		Do not write outside the box
	Explain why you would not expect titanium chloride to be a liquid at		
	room temperature.	[3 marks]	
	In Stage 2, sodium displaces titanium from titanium chloride.		
	Sodium atoms are oxidised to sodium ions in this reaction.		
0 8 5	Why is this an oxidation reaction?		
		[1 mark]	
086	Complete the half equation for the oxidation reaction.		
		[1 mark]	
	Na 🗆 +		
		Turn over ►	

		Do not write outside the
0 8 7	In Stage 2, 40 kg of titanium chloride was added to 20 kg of sodium.	box
	The equation for the reaction is:	
	TiCl4 + 4 Na 🛛 Ti + 4 NaCl	
	Relative atomic masses (Ar): Na = 23 Cl = 35.5 Ti = 48 Explain why	
	titanium chloride is the limiting reactant.	
	You must show your working.	
	[4 marks]	
08.8	For a Stage 2 reaction the percentage yield was 92.3%	
	The theoretical maximum mass of titanium produced in this batch was 13.5 kg.	
	Calculate the actual mass of titanium produced.	
	[2 marks]	
	Mass of titanium = kg	
		15
		15

0 9	This question is about acids and alkalis.	Do not write outside the box
091	Dilute hydrochloric acid is a strong acid.	
	Explain why an acid can be described as both strong and dilute.	
	[2 marks]	
0 9 2	A 1.0 × 10–3 mol/dm3 solution of hydrochloric acid has a pH of 3.0	
	What is the pH of a 1.0 \times 10–5 mol/dm3 solution of hydrochloric acid?	
	[1 mark] pH =	
	Question 9 continues on the next page	
	Turn over ►	

A student titrated 25.0 cm3 portions of dilute sulfuric acid with a 0.105 mol/dm3 sodium hydroxide solution.

Table 4 shows the student's results.

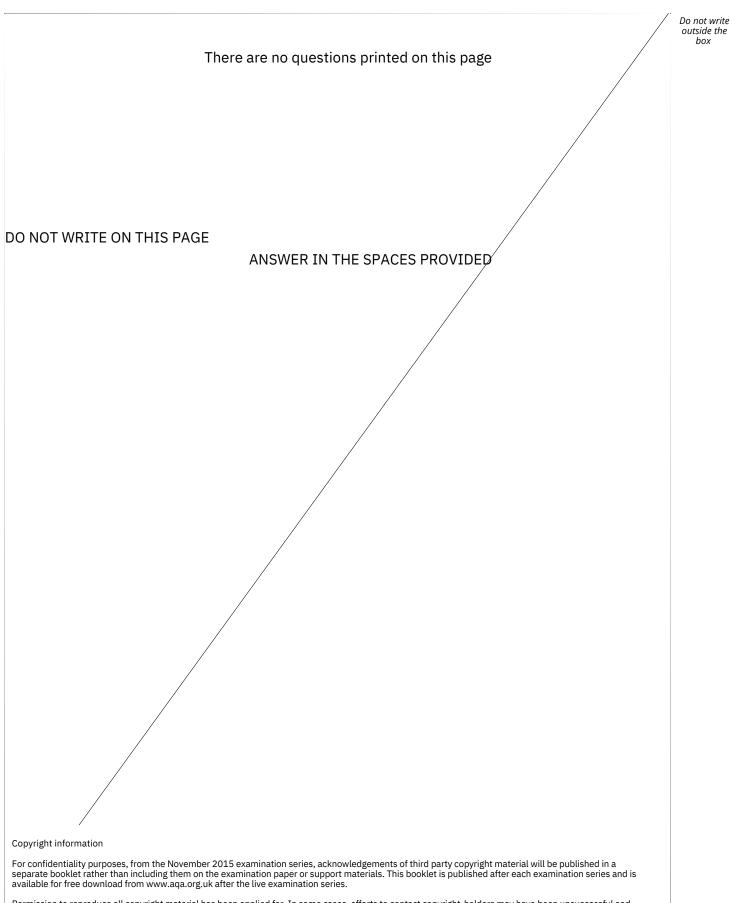
Table 4

	Titration	Titration	Titration	Titration	Titration
	1	2	3	4	5
Volume of sodium hyd	roxide solutic	on in cm3 23.	50 21.10 22.:	10 22.15	22.15

The equation for the reaction is:

2 NaOH + H2SO4 🛛 Na2SO4 + 2 H2O

Calculate the concentration of the sulfuric acid in mol/dm3


Use only the student's concordant results.

Concordant results are those within 0.10 cm3 of each other.

	mol/dm
	moyam
Concentration of sulfuric acid =	

[5 marks]

09.4	Explain why the student should use a pipette to measure the dilute sulfuric acid and a burette to measure the sodium hydroxide solution.	Do not write outside the box
	[2 marks]	
09.5	Calculate the mass of sodium hydroxide in 30.0 cm3 of a 0.105 mol/dm3 solution.	
	Relative formula mass (<i>M</i> r): NaOH = 40	
	[2 marks]	
	Mass of sodium hydroxide = g	·
		12
	END OF QUESTIONS	

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

28*