$A Q A B$

Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- | Candidate number

Surname
Forename(s)
Candidate signature \qquad

GCSE

Thursday 17 May 2018

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation

For Examiner's Use	
Question Mark	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

| 0 | 1 |
| :--- | :--- | :--- |\quad This question is about mixtures.

Substances are separated from a mixture using different methods.
Draw one line from each substance and mixture to the best method of separation.
[3 marks]

Substance and mixture Method of separation

Chromatography

Ethanol from ethanol and
water

Crystallisation

Salt from sea water Electrolysis

Fitration
The different cotours in

black ink
Fractional distillation

0	1.2	A student filters a mixture.

Figure 1 shows the apparatus.

Figure 1

Suggest oneimprovement to the apparatus.

| 0 | 1.3 |
| :--- | :--- | :--- |

Choose answers from the box.
[2 marks]

condense	evaporate	freeze	melt	solidify

In simple distillation, the mixture is heated to make the liquid

The vapour is then cooled to make it .

Figure 2shows the arrangement of atoms in a pure metal and in a mixture of metals.

Figure 2

Calculate the percentage of metal B Figure 2.
\qquad
\qquad
\qquad
Percentage of metal B atoms $=$ \qquad \%

	0,	5

Tick one box.

An alloy

A compound

A molecule

A polymer

$\square 0$ Why is the mixture of metals in Figure 2 harder than the pure metal?
Tick one box.

The atoms in the mixture are different shapes. \square
The layers in the mixture are distorted. \square

The layers in the mixture slide more easily. \square

The mixture has a giant structure. \square

| 0 | 1.7 |
| :--- | :--- | A nanoparticle of pure metal A is a cube.

Each side of the cube has a length of 20 nm .
Figure 3 shows the cube.

Figure 3

What is the volume of the nanoparticle?
Tick one box.

20 nm3

60 nm3

400 nm3

8000 nm3

0	2	The halogens are elements in Group 7.

| 0 | 2. |
| :--- | :--- |\quad Bromine is in Group 7.

Give the number of electrons in the outer shell of a bromine atom.

0	2.

What is the structure of hydrogen bromide?
Tick one box.

Giant covalent

Ionic lattice

Metallic structure

Small molecule

0	2.

[1 mark]
Tick one box.

F

F2

F2

2F

A student mixes solutions of halogens with solutions of their salts.
Table 1 shows the student's observations.

Table 1

	Potassium chloride (colourless)	Potassium bromide (colourless)	Potassium iodide (colourless)
Chlorine (colourless)	Solution turns orange	Solution turns brown	
Bromine (orange)	No change	Nochange	Solution turns brown
(bdine (brown)	No change		

0	2.4	Explain how the reactivity of the halogens changes going down Group 7.

Use the results in Table 1.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 2 continues on the next page

A company uses chlorine to produce titanium chloride from titanium dioxide.
What is the relative formula mass (Mr) of titanium dioxide, TiO 2 ?
Relative atomic masses (Ar): $0=16 \mathrm{Ti}=48$
Tick one box.

64

80

128

768

0	2.

The company calculates that 500 g of titanium dioxide should produce 1.2 kg of titanium chloride.

However, the company finds that 500 g of titanium dioxide only produces 900 g of titanium chloride.
Calculate the percentage yield.
\qquad
\qquad
\qquad - Percentage yield $=\%$

Turn over for the next question

DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED

| 0 | 3 |
| :--- | :--- | :--- |\quad This question is about the structure of the atom.

Complete the sentences.
Choose answers from the box.
Each word may be used once, more than once, or not at all.

electron	ion	neutron
nucleus	proton	

The centre of the atom is the . \qquad

The two types of particle in the centre of the atom are the proton and the .

James Chadwick proved the existence of the

Niels Bohr suggested particles orbit the centre of the atom. This type of particle is the .

The two types of particle with the same mass are the neutron and the .

Table 2 shows information about two isotopes of element X .

Table 2

	Mass number	Percentage (\%) abundance
Isotope 1	63	70
Isotope 2	65	30

$\square 103.2 \mathrm{a}$ alculate the relative atomic mass (Ar) of element X using the equation:
${ }^{A}$ (mass number \times percentage) of isotope $1+$ (mass number \times percentage) of isotope $2 r=100$ Use Table 2.

Give your answer to 1 decimal place.
\qquad
\qquad
\qquad
\qquad
$A r=$

0	3.

Use the periodic table.

Element X is

| 0 | 3.4 |
| :--- | :--- | The radius of an atom of element X is $1.2 \times 10-10 \mathrm{~m}$

The radius of the centre of the atom is 1 \qquad
the radius of the atom. 10000
Calculate the radius of the centre of an atom of element X.
Give your answer in standard form.
[2 marks]
\qquad
\qquad
\qquad
\qquad
Radius $=\quad \mathrm{m}$

A student investigated the electrolysis of sodium chloride solution.
Figure 4 shows the apparatus.
Figure 4

The student measured the volume of gas collected in each measuring cylinder every minute for 20 minutes.

Figure 5 shows the volume of hydrogen gas collected in the measuring cylinder after 8 minutes.

Figure 5

What is the volume of hydrogen gas collected?

Volume $=$
cm3

Question 4 continues on the next page

Figure 6shows the results of the investigation.

Figure 6

| 0 | 4 |
| :--- | :--- | 2 Which of the lines on Figure 6show that the volume of gas collected is directly proportional to the time?

[1 mark]
Tick one box.

Both lines \square
Chlorine line only \square
Hydrogen line only \square
Neither line \square

0	4	3

Which of the lines onFigure 6show a positive correlation between the volume of gas collected and time?

Tick one box.

Both lines

Chlorine line only \square

Hydrogen line only \square
Neither line \square

Question 4 continues on the next page

A teacher demonstrates the electrolysis of different substances using graphite electrodes.
Figure 7 shows the apparatus used.
Figure 7

| 0 | 4 | 4 |
| :--- | :--- | :--- | Why can graphite conduct electricity?

Tick one box.

Graphite exists in layers of atoms. \square
Graphite has a giant structure.

Graphite has a high melting point.

Graphite has delocalised electrons. \square

| 0 | 4 | 5 |
| :--- | :--- | :--- | The teacher demonstrates the electrolysis of:

- molten zinc chloride
- potassium bromide solution.

Complete Table 3 to predict the products.
Choose answers from the box.
[4 marks]
chlorine bromine hydrogen oxygen potassium zinc

Table 3

Substance electrolysed	Product at cathode (negative electrode)	Product at anode (positive electrode)
Molten zinc chloride		
Potassium bromide solution		

Turn over for the next question

| 0 | 5 | A student investigated the mass of copper oxide produced by heating |
| :--- | :--- | :--- | copper carbonate.

This is the method used.

1. Weigh an empty test tube.
2. Weigh 2.00 g of copper carbonate into the test tube.
3. Heat the copper carbonate until there appears to be no further change.
4. Re-weigh the test tube and copper oxide produced.
5. Subtract the mass of the empty tube to find the mass of copper oxide.
6. Repeat steps 1-5 twice.
7. Repeat steps 1-6 with different masses of copper carbonate.

Table 4 shows the student's results.

Table 4

Mass of copper carbonate in g	Mass of copper oxide in g			
	Trial 1	Trial 2	Trial 3	Mean
2.001 .291	. 271.314 .002 .89	392.572 .596 .00	03.853 .90	1.29
3.878 .005 .1	25.155 .0910 .00	6.426 .456 .45		2.58
				3.87
The equation	for the reaction is:			X
		CuCO3(s) $\square \mathrm{CuO}$	(s) + CO2(g)	6.44

| 0 | 5.7 |
| :--- | :--- | Complete the sentence.

The state symbol shows carbon dioxide is a \qquad

0	5.

\qquad
\qquad
$\left.\begin{array}{|l|l|}\hline 0 & 5 .\end{array}\right\}$ Calculate the mean mass X in Table 4
\qquad
\qquad
\qquad

0	5.4

Which result is anomalous?
[1 mark]
Mass of copper carbonate g

Trial

0 5. 5 Suggest how the investigation could be improved to make sure the reaction is complete.
\qquad
\qquad
\qquad
\qquad

Another student repeated the investigation using magnesium carbonate instead of copper carbonate. The word equation for the reaction is:
magnesium carbonate \square magnesium oxide + carbon dioxide
Figure 8 shows the results of the investigation.

Figure 8

* 20 *

0	5.

 Use Figure 8.

Calculate the mass of magnesium oxide produced when 168 g of magnesium carbonate is heated.

Use your answer to Question 05.7
\qquad
\qquad
\qquad
\qquad
\qquad
Mass of magnesium oxide produced $=$ \qquad g

Turn over for the next question

| 0 | 6 |
| :--- | :--- | A student investigated the temperature change in displacement reactions between metals and copper sulfate solution.

This is the method used.

1. Measure 50 cm 3 of the copper sulfate solution into a polystyrene cup.
2. Record the starting temperature of the copper sulfate solution.
3. Add the metal and stir the solution.
4. Record the highest temperature the mixture reaches.
5. Calculate the temperature increase for the reaction.
6. Repeat steps 1-5 with different metals.

| | 0 | 6 |
| :--- | :--- | :--- | :--- | the investigation.

Type of variable

Name of variable in the investigation

Concentration of solution

Dependent variable

Particle size of solid

Independent variable

> Temperature change

The student used a polystyrene cup and not a glass beaker.
Why did this make the investigation more accurate?
Tick one box.

Glass is breakable

Glass is transparent \square

Polystyrene is a better insulator \square

Polystyrene is less dense

Question 6 continues on the next page

Table 5 shows the student's results.

Table 5

Metal	Temperature increase in ${ }^{\circ} \mathrm{C}$
Magnesium	38
Nickel	8
Zinc	16

$\begin{array}{lll}0 & 6 & 3 \\ \end{array}$
Use data from Table 5.

Figure 9

* 24 *

The student concluded that the reactions between the metals and copper sulfate solution are endothermic.

Give one reason why this conclusion is not correct.
\qquad
\qquad

| 0 | 6 | 5 |
| :--- | :--- | :--- | The temperature increase depends on the reactivity of the metal.

Write the metals magnesium, nickel and zinc in order of reactivity.
Use Table 5.

Most reactive

Least reactive

0	6.

Describe a method to find the position of Y in the reactivity series in Questio@6.5 [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Figure 10 shows the reaction profile for the reaction between zinc and copper sulfate solution.

Figure 10

Progress of reaction

	0	7 Which letter represents the products of the reaction?

Tick one box.

$\square 0 \$ 8$ Which letter represents the activation energy?
Tick one box.
$A B C$
\square
\square

D	

E	

Turn over for the next question

DO NOT WRITE ON THIS PAGE

* 27 *

0	7	This question is about elements in Group 1.

A teacher burns sodium in oxygen.

0	7.

sodium + oxygen

0	7.2

Tick one box.

Decomposition

Electrolysis \square
Oxidation

Precipitation

| 0 | 7.3 The teacher dissolves the product of the reaction in water and adds |
| :--- | :--- | :--- | universal indicator.

The universal indicator turns purple.
What is the pH value of the solution?
Tick one box.

*2 8 *

| 0 | 7 | 4 |
| :--- | :--- | :--- | The solution contains a substance with the formula NaOH

Give the name of the substance.

| 0 | 7. |
| :--- | :--- | All alkalis contain the same ion.

What is the formula of this ion?
Tick one box.

H+

$\mathrm{Na}+$

$\mathrm{OH}-$

O^{2-}

| 0 | 7. |
| :--- | :--- | A solution of NaOH had a concentration of $40 \mathrm{~g} / \mathrm{dm} 3$

What mass of NaOH would there be in 250 cm 3 of the solution?
\qquad
\qquad
\qquad
\qquad
Mass =

\section*{| 0 | 7. |
| :--- | :--- |}

Table 6 shows the atomic numbers and melting points of the Group 1 elements.
Table 6

	Element	Atomic number	Melting point in ${ }^{\circ} \mathrm{C}$
Lithium		3	181
Sodium		11	98
Potassium		19	63
Rubidium		37	X
Caesium		55	29

Plot the data from Table 6 on
Figure 11.

Figure 11

| 0 | 7. |
| :--- | :--- | Predict the melting point, X, of rubidium, atomic number 37

Use Figure 11.

0	8	Soluble salts are formed by reacting metal oxides with acids.

0	8.

Give one other type of substance that can react with an acid to form a soluble salt.
\qquad

| 0 | 8 |
| :--- | :--- | 2 Calcium nitrate contains the ions $\mathrm{Ca} 2+$ and $\mathrm{NO}-3$

Give the formula of calcium nitrate.

| 0 | 8 |
| :--- | :--- | oxide and a dilute acid.

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]| 0 | 9 |
| :--- | :--- |

Iron pyrites is an ionic compound.
Figure 12 shows a structure for iron pyrites.
Figure 12

Determine the formula of iron pyrites.
Use Figure 12.

0	9.2

An atom of iron is represented as 5626 Fe
Give the number of protons, neutrons and electrons in this atom of iron.

Number of protons
Number of neutrons \qquad
Number of electrons \qquad

0	9	3

Sodium is a Group 1 metal.
Give two differences between the properties of iron and sodium.
[2 marks]
1

2

Nickel is extracted from nickel oxide by reduction with carbon.

	09
4	Explain why carbon can be used to extract nickel from nickel oxide.

[2 marks]
\qquad
\qquad
\qquad
\qquad

0	9.5 An equation for the reaction is:

$\mathrm{NiO}+\mathrm{CDNi}+\mathrm{CO}$
Calculate the percentage atom economy for the reaction to produce nickel.
Relative atomic masses (Ar): C=12Ni=59
Relative formula mass (Mr): $\mathrm{NiO}=75$
Give your answer to 3 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Percentage atom economy = \%

1	0	$C h e m i c a l ~ r e a c t i o n s ~ c a n ~ p r o d u c e ~ e l e c t r i c i t y . ~$

1	0

Figure 13

Which of these combinations would not give a zero reading on the voltmeter in Figure 13?

Tick onebox.

Electrode A	Electrode B	Electrolyte	
Copper	Copper	Sodium chloride solution	\square
Zinc	Zinc	Water	\square
Copper	Zinc	Sodium chloride solution Water	\square
Copper	Zinc		\square

Alkaline batteries are non-rechargeable.

| 1 | 0 | 2 |
| :--- | :--- | :--- | Why do alkaline batteries eventually stop working?

\qquad
\qquad

| 1 | 0 |
| :--- | :--- | 3 Why can alkaline batteries notbe recharged?

\qquad
\qquad

Question 10 continues on the next page

Hydrogen fuel cells and rechargeable lithium-ion batteries can be used to power

electric cars.

| 1 | 0 |
| :--- | :--- | Complete the balanced equation for the overall reaction in a hydrogen fuel cell.

[2 marks]
\qquad H2 + \qquad \square \qquad H2O

| 1 | 0 | 5 |
| :--- | :--- | :--- | Table 7shows data about different ways to power electric cars.

Table 7

	Hydrogen fuel cell	Rechargeable lithium-ion battery
Time taken to refuel or recharge in minutes 530		
Distance travelled before refuelling or recharging in miles Up to 415 Up to 240		
Distance travelled per unit of energy in km 2266 Cost of refuelling or recharging in $£ 503$ Minimum cost of car in $£ 60000$		
	000	

Evaluate the use of hydrogen fuel cells compared with rechargeable lithium-ion batteries to power electric cars.
Use Table 7 and your own knowledge.
\qquad
\qquad
\qquad
\qquad
\qquad

END OF QUESTIONS

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

[^0]: Turn over for the next question

